The Harmful Phytoplankter Chaetoceros concavicornis Causes High Mortalities and Leucopenia in Chinook Salmon (Oncorhynchus tshawytscha) and Coho Salmon (O. kisutch)

1994 ◽  
Vol 51 (11) ◽  
pp. 2493-2500 ◽  
Author(s):  
C. Z. Yang ◽  
L. J. Albright

Chaetoceros concavicornis is a harmful phytoplankter that occurs in many temperate coastal seawaters and can cause fin fish mortalities when present at concentrations as low as 5 cells∙mL−1. At even lower concentrations, this diatom can stress salmonids to such an extent that they may express a disease to which they are most prone at the time of C. concavicornis exposure. We report mortality rates of coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) exposed to different concentrations of C. concavicornis. Our data indicate that in the presence of harmful concentrations of C. concavicornis, blood hematocrit and erythrocyte, glucose, and lactate concentrations of yearling chinook salmon (O. tshawytscha) increase. The microridges of the primary lamellae decreased in prominence in the presence of harmful concentrations of this phytoplankter, while the goblet cells became more prominent and more numerous. Neutrophil, lymphocyte, and thrombocyte concentrations in the blood became depleted. These data suggest that suppression of a portion of the Chinook's immune system is occurring which may partially explain the earlier observation that salmonids cultured in the presence of harmful C. concavicornis phytoplankton became more susceptible to disease, including Vibrio infections.

1989 ◽  
Vol 67 (6) ◽  
pp. 1604-1607 ◽  
Author(s):  
Patrick M. Muzzall

Adult salmonids (101 chinook salmon, Oncorhynchus tshawytscha; 7 coho salmon, Oncorhynchus kisutch; 56 lake trout, Salvelinus namaycush; 6 steelhead, Salmo gairdneri; and 2 brown trout, Salmo trutta) were collected from eastern Lake Michigan (Ludington and Manistee, Michigan) in July–September 1986, and examined for helminths. Eight species (three Cestoda, three Nematoda, two Acanthocephala) were found in the digestive tract and other viscera. Echinorhynchus salmonis and Eubothrium salvelini were the most common helminths found. The intensity of E. salmonis significantly increased as chinook salmon became older and longer.


2015 ◽  
Vol 72 (3) ◽  
pp. 454-465 ◽  
Author(s):  
Joseph H. Anderson ◽  
Paul L. Faulds ◽  
Karl D. Burton ◽  
Michele E. Koehler ◽  
William I. Atlas ◽  
...  

Following construction of a fish ladder at Landsburg Diversion Dam on the Cedar River, Washington, USA, in fall 2003, we used DNA-based parentage to identify second generation Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon as recruits that were produced above the dam or “strays” dispersing into the new habitat that were produced elsewhere. For both species, strays colonized immediately but decreased as a proportion of the total run over time. Chinook salmon strays were more numerous in years when the species was more abundant below the dam and included a much larger proportion of hatchery origin salmon than did coho salmon. Productivity, calculated as the ratio of female recruits sampled at the dam to female spawners, exceeded replacement in all four coho salmon cohorts but only two of five Chinook salmon cohorts, leading to more rapid population expansion of coho salmon. However, estimates of fishing mortality and recruitment into the Cedar River below the dam substantially increased Chinook salmon productivity estimates. Our results demonstrate that Pacific salmon are capable of rapidly recolonizing habitat made accessible by restoration and emphasize the importance of demographic exchange with preexisting populations during the transition from recolonization to self-sustainability.


1999 ◽  
Vol 56 (6) ◽  
pp. 960-972 ◽  
Author(s):  
Barry D Smith

Since 1984, an access-point creel survey of the Strait of Georgia, British Columbia, sport fishery has generated data on catch, effort, and attributes of effort from thousands of interviews of salmon anglers completing a daily boat-trip. I present a maximum-likelihood model for this daily bag limit (DBL) constrained fishery that estimates catch rate and variance for various angling fleets (as defined by boat-trip attributes such as the number of angling lines), estimates the probability that a boat-trip ends after a certain number of hours angling, and measures how angling success influences that probability. Most anglers targeting either chinook salmon (Oncorhynchus tshawytscha) or coho salmon (Oncorhynchus kisutch) became more likely to end a boat-trip in response to angling success, i.e., they were satiated by angling success before reaching a DBL. However, autumn and winter chinook salmon anglers tended to extend a boat-trip in response to angling success, i.e., they were motivated by angling success. Variability in angling success could not be attributed to variability in angler skill. Coho salmon catch rates increased by about 42% with each additional angling line per boat-trip up to three. The model can be used to judge the effectiveness of a DBL in reducing daily catch.


1993 ◽  
Vol 50 (4) ◽  
pp. 759-766 ◽  
Author(s):  
Kira Salonius ◽  
George K. Iwama

Coho (Oncorhynchus kisutch) and chinook salmon (0. tshawytscha) from aquaculture and wild environments were subjected to handling (30–60 s of netting and aerial emersion) and disease challenges. Plasma cortisol concentrations ([cortisol]pl) in both coho and chinook salmon from wild environments were significantly elevated 4 h after handling. Colonized coho salmon (hatchery-reared fish, transported into a natural water body as fry) responded in a similar fashion to wild fish, while those reared entirely in the hatchery showed no significant rise in [cortisol]pl. The responses to handling stress were retained in wild and colonized coho salmon after 7 mo of hatchery rearing. A transient increase in the leukocyte to red blood cell ratio in both wild and hatchery-reared chinook salmon occurred 4 h after handling. Handling signficantly decreased the antibody-producing cell (APC) number in wild fish and elevated their [cortisol]plrelative to hatchery fish. Wild fish had the highest APC number among the three groups before the handling. No difference in resistance to Vibrio anguillarum was apparent in coho and chinook salmon among the different rearing environments, although chinook salmon were generally more susceptible; disease resistance was reduced in wild coho salmon after 7 mo of rearing in a hatchery.


2020 ◽  
Vol 43 (7) ◽  
pp. 719-728 ◽  
Author(s):  
Maureen K. Purcell ◽  
Rachel L. Powers ◽  
Torunn Taksdal ◽  
Doug McKenney ◽  
Carla M. Conway ◽  
...  

1981 ◽  
Vol 38 (12) ◽  
pp. 1636-1656 ◽  
Author(s):  
W. E. Ricker

Of the five species of Pacific salmon in British Columbia, chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) are harvested during their growing seasons, while pink salmon (O. gorbuscha), chum salmon (O. keta), and sockeye salmon (O. nerka) are taken only after practically all of their growth is completed. The size of the fish caught, of all species, has decreased, but to different degrees and over different time periods, and for the most part this results from a size decrease in the population. These decreases do not exhibit significant correlations with available ocean temperature or salinity series, except that for sockeye lower temperature is associated with larger size. Chinook salmon have decreased greatly in both size and age since the 1920s, most importantly because nonmaturing individuals are taken by the troll fishery; hence individuals that mature at older ages are harvested more intensively, which decreases the percentage of older ones available both directly and cumulatively because the spawners include an excess of younger fish. Other species have decreased in size principally since 1950, when the change to payment by the pound rather than by the piece made it profitable for the gill-netters to harvest more of the larger fish. Cohos and pinks exhibit the greatest decreases, these being almost entirely a cumulative genetic effect caused by commercial trolls and gill nets removing fish of larger than average size. However, cohos reared in the Strait of Georgia have not decreased in size, possibly because sport trolling has different selection characteristics or because of the increase in the hatchery-reared component of the catch. The mean size of chum and sockeye salmon caught has changed much less than that of the other species. Chums have the additional peculiarity that gill nets tend to take smaller individuals than seines do and that their mean age has increased, at least between 1957 and 1972. That overall mean size has nevertheless decreased somewhat may be related to the fact that younger-maturing individuals grow much faster than older-maturing ones; hence excess removal of the smaller younger fish tends to depress growth rate. Among sockeye the decrease in size has apparently been retarded by an increase in growth rate related to the gradual cooling of the ocean since 1940. However, selection has had two important effects: an increase in the percentage of age-3 "jacks" in some stocks, these being little harvested, and an increase in the difference in size between sockeye having three and four ocean growing seasons, respectively.Key words: Pacific salmon, age changes, size changes, fishery, environment, selection, heritability


Sign in / Sign up

Export Citation Format

Share Document