Metallothionein expression in slow- vs. fast-twitch muscle fibers following 4 weeks of streptozotocin-induced type 1 diabetes
Type 1 diabetes (T1DM) is known to cause an increase in reactive oxygen species (ROS) and elevated intracellular glucose levels. We investigated the metallothionein I and II (MT I+II) antioxidants expression in soleus (mainly slow-twitch) and plantaris (predominantly fast-twitch) skeletal muscle using a rodent model of streptozotocin-induced diabetes. The presence of oxidative stress was confirmed by the detection of increased levels of protein carbonyl formation in the diabetic tissues. DAB (3,3′-diaminobenzidine) immunostaining and Western blotting analyses demonstrated that MT I+II expression was significantly upregulated in the diabetic soleus and plantaris muscle tissues compared with their respective controls. Moreover, no significant difference was detected between the plantaris and soleus controls or between the plantaris and soleus diabetic tissues. These findings suggest that there is an increase in MT protein expression in the soleus and plantaris muscles associated with the induction of T1DM. A better understanding of the molecular mechanisms that allow MT to prevent the oxidative stress associated with diabetes could lead to a novel therapeutic strategy for this chronic disease and its associated complications.