Characterization of the chromosome complement of Helianthus annuus by in situ hybridization of a tandemly repeated DNA sequence

Genome ◽  
2007 ◽  
Vol 50 (5) ◽  
pp. 429-434 ◽  
Author(s):  
M. Ceccarelli ◽  
V. Sarri ◽  
L. Natali ◽  
T. Giordani ◽  
A. Cavallini ◽  
...  

A tandemly repeated sequence isolated from a clone (HAG004N15) of a nebulized genomic DNA library of sunflower (Helianthus annuus L., 2n = 34) was characterized and used to study the chromosome complement of sunflower. HAG004N15 repeat units (368 bp in length) were found to be highly methylated, and their copy number per haploid (1C) genome was estimated to be 7800. After in situ hybridization of HAG004N15 repeats onto chromosome spreads, signals were observed at the end of both chromosome arms in 4 pairs and at the end of only one arm in 8 other pairs. Signals were also observed at the intercalary (mostly subtelomeric) regions in all pairs, in both arms in 8 pairs, and in only one arm in the other 9 pairs. The short arm of 1 pair was labelled entirely. The chromosomal location of ribosomal DNA was also studied by hybridizing the wheat ribosomal probe pTa71. Four chromosome pairs contained ribosomal cistrons at the end of their shorter arm, but a satellite was seen in only 3 pairs. These hybridization patterns were the same in the 3 sunflower lines studied (HA89, RA20031, and HOR). The chromosomal localization of HAG004N15-related sequences allowed all of the chromosome pairs to be distinguished from each other, in spite of small size and similar morphology.

Genome ◽  
2000 ◽  
Vol 43 (1) ◽  
pp. 181-184 ◽  
Author(s):  
Chunxian Chen ◽  
Huihuang Yan ◽  
Wenxue Zhai ◽  
Lihuang Zhu ◽  
Jingsan Sun

Two clones of a new family of tandemly repeated DNA sequences have been isolated from a maize random genomic DNA library. MR68 is 410 bp, representing a monomeric unit and MR77 is 1222 bp, containing three units. The copy number was estimated to be about 3000 per 1C maize genome. Its methylation pattern was also determined. Fluorescent in situ hybridization (FISH) indicates that the sequence is located on the subtelomeric region of the long arm of chromosomes 3 and 6, as well as on the satellite of chromosome 6. Key words: Zea mays, tandemly repeated DNA, satellite DNA, fluorescent in situ hybridization (FISH).


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 589-593 ◽  
Author(s):  
C. Pedersen ◽  
P. Langridge

Using the Aegilops tauschii clone pAs1 together with the barley clone pHvG38 for two-colour fluorescence in situ hybridization (FISH) the entire chromosome complement of hexaploid wheat was identified. The combination of the two probes allowed easy discrimination of the three genomes of wheat. The banding pattern obtained with the pHvG38 probe containing the GAA-satellite sequence was identical to the N-banding pattern of wheat. A detailed idiogram was constructed, including 73 GAA bands and 48 pAs1 bands. Identification of the wheat chromosomes by FISH will be particularly useful in connection with the physical mapping of other DNA sequences to chromosomes, or for chromosome identification in general, as an alternative to C-banding.Key words: Triticum aestivum, chromosome identification, fluorescence in situ hybridization, repetitive DNA sequences.


Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 560-565 ◽  
Author(s):  
Garth R Brown ◽  
Craig H Newton ◽  
John E Carlson

Repeated DNA families contribute to the large genomes of coniferous trees but are poorly characterized. We report the analysis of a 142 bp tandem repeated DNA sequence identified by the restriction enzyme Sau3A and found in approximately 20 000 copies in Picea glauca. Southern hybridization indicated that the repeated DNA family is specific to the genus, was amplified early in its evolution, and has undergone little structural alteration over evolutionary time. Fluorescence in situ hybridization localized arrays of the Sau3A repeating element to the centromeric regions of different subsets of the metaphase chromosomes of P. glauca and the closely related Picea sitchensis, suggesting that mechanisms leading to the intragenomic movement of arrays may be more active than those leading to mutation of the repeating elements themselves. Unambiguous identification of P. glauca and P. sitchensis chromosomes was made possible by co-localizing the Sau3A tandem repeats and the genes encoding the 5S and 18S-5.8S-26S ribosomal RNAs.Key words: Picea, repeated DNA, in situ hybridization, centromere.


Genome ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 548-557 ◽  
Author(s):  
Araceli Fominaya ◽  
Gregorio Hueros ◽  
Yolanda Loarce ◽  
Esther Ferrer

Satellite DNA specific to the oat C genome was sequenced and located on chromosomes of diploid, tetraploid, and hexaploid Avena ssp. using in situ hybridization. The sequence was present on all seven C genome chromosome pairs and hybridized to the entire length of each chromosome, with the exception of the terminal segments of some chromosome pairs. Three chromosome pairs belonging to the A genome showed hybridization signals near the telomeres of their long arms. The existence of intergenomic chromosome rearrangements and the deletions of the repeated units are deduced from these observations. The number of rDNA loci (18S–5.8S–26S rDNA) was determined for the tetraploid and hexaploid oat species. Simultaneous in situ hybridization with the satellite and rDNA probes was used to assign the SAT chromosomes of these species to their correct genomes.Key words: oats, satellite DNA, rDNA, in situ hybridization, genome evolution.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 706-711 ◽  
Author(s):  
Richard Blunden ◽  
Timothy J. Wilkes ◽  
John W. Forster ◽  
Mar M. Jimenez ◽  
Michael J. Sandery ◽  
...  

A second family of highly repeated sequences has been identified on the B chromosome of rye (Secale cereale). The E3900 family was detected as a variant band in EcoRI digests of +B DNA. A clone of the basic repeat of the family was obtained, and the organization of the family was investigated by genomic hybridization. The E3900 family has no apparent homology to the A chromosome sequences of rye or other members of the Gramineae. The family has been localized by in situ hybridization to the end of the long arm of the rye B chromosome. The previously characterized E1100 sequence shows in situ hybridization to the same location as the E3900 family. These results are discussed in light of current theories of the origin of B chromosomes.Key words: B chromosome, Secale cereale, repeated sequence, cloning, in situ hybridization.


Genome ◽  
1990 ◽  
Vol 33 (1) ◽  
pp. 30-39 ◽  
Author(s):  
J. Dvořák ◽  
P. Resta ◽  
R. S. Kota

The genome allocation of the Triticum aestivum L. chromosomes denoted 4A and 4B was based on an erroneous inference. Since neither chromosome pairs with the chromosomes of putative ancestors of wheat, molecular tools were employed to clarify the origin of the two chromosomes. Disomic substitutions for T. aestivum chromosomes 4A or 4B by chromosomes 4 from T. speltoides (Tausch) Gren., a putative ancestor of the wheat B genome, T. longissimum (Schweinf. et Muschl.) Bowden (a close relative of T. speltoides), or T. monococcum L. ssp. aegilopoides (Link) Thell., a close relative of the ancestor of the wheat A genome, were produced. The ability of the substituted chromosome to compensate in the disomic substitution lines, the C-banding patterns of the chromosomes, electrophoretic alleles at the Adh-1 and Lpx-1 loci, and in situ hybridization with an interspersed repeated sequence all were consistent in showing that the chromosome previously denoted as 4A belongs to the B genome and the chromosome previously denoted as 4B is a rearranged chromosome of the A genome. Chromosome 4A is consequently reallocated to the B genome and chromosome 4B to the A genome in T. turgidum L. em. Morris et Sears and T. aestivum. To reflect the fact that the chromosome previously denoted as 4B has only a homoeologous relationship to chromosome 4A of T. urartu (the ancestor of the A genome in polyploid wheats), the chromosome is designated 4Aa.Key words: repeated nucleotide sequence, alcohol dehydrogenase, lipoxygenase, in situ hybridization, chromosome evolution.


Genome ◽  
2008 ◽  
Vol 51 (9) ◽  
pp. 705-713 ◽  
Author(s):  
V. Sarri ◽  
S. Minelli ◽  
F. Panara ◽  
M. Morgante ◽  
I. Jurman ◽  
...  

Three clones containing satellite DNA sequences were selected from a randomly sheared genomic DNA library of Picea abies (clones PAF1, PAG004P22F (2F), and PAG004E03C (3C)). PAF1 contained 7 repeats that were 37–55 bp in length and had 68.9%–91.9% nucleotide sequence similarity. Two 2F repeats were 305–306 bp in length and had 83% sequence similarity. Two 3C repeats were 193–226 bp in length and had a sequence similarity of 78.6%. The copy number per 1C DNA of PAF1, 2F, and 3C repeats was 2.7 × 106, 2.9 × 105, and 2.9 × 104, respectively. In situ hybridization showed centromeric localization of these sequences in two chromosome pairs with PAF1, all pairs but one with 2F, and three pairs with 3C. Moreover, PAF1 sequences hybridized at secondary constrictions in six pairs, while 2F-related sequences were found at these chromosome regions only in four pairs. These hybridization patterns allow all chromosome pairs to be distinguished. PAF1-related repeats were contained in the intergenic spacer (IGS) of ribosomal cistrons in all six nucleolar organizers of the complement, while sequences related to 2F were found on only one side of the rDNA arrays in four pairs, showing structural diversity between rDNA regions of different chromosomes.


Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1194-1200 ◽  
Author(s):  
M J González ◽  
A Cabrera

Total genomic Hordeum chilense DNA probe was hybridized to somatic chromosome spreads of Triticum aestivum 'Chinese Spring' and to four advanced tritordeum lines, the latter being the fertile amphiploid between H. chilense and durum wheat (2n = 6x = 42, AABBHchHch). The probe hybridized strongly to the B-genome chromosomes and to one or two bands on the A-genome chromosomes present in both wheat and tritordeum alloploids. Bands on chromosomes 1D, 2D, and 7D from hexaploid wheat were also detected. Genomic H. chilense DNA probe identified 16 chromosome pairs of the chromosome complement of hexaploid wheat and all A- and B-genome chromosomes present in the tritordeum amphiploids. The in situ hybridization patterns observed correspond to those previously reported in wheat by both N-banding and in situ hybridization with the GAA-satellite sequence (Pedersen and Langridge 1997), allowing the identification of these chromosomes. Variation among the tritordeum amphiploids for hybridization sites on chromosomes 2A, 4A, 6A, 7A, 4B, 5B, and 7B was observed. Despite of this polymorphism, all lines shared the general banding pattern. When used as probe, total H. chilense genomic DNA labeled the H. chilense chromosomes over their lengths allowing the identification of 14 H. chilense chromosomes present in the tritordeum amphiploids. In addition, chromosome-specific telomeric, interstial, and centromeric hybridization sites were observed. These hybridization sites coincide with N-banded regions in H. chilense allowing the identification of the individual H. chilense chromosomes in one of the amphiploid. The N-banded karyotypes of H. chilense (accessions H1 and H7) are presented.Key words: Hordeum chilense, Triticum aestivum, chromosome identification, in situ hybridization, N-banding.


Sign in / Sign up

Export Citation Format

Share Document