MEIOTIC BEHAVIOR OF EXTRA HETEROCHROMATIN IN THE TOMATO: EFFECTS ON SEVERAL VITAL PROCESSES

1976 ◽  
Vol 18 (2) ◽  
pp. 325-337 ◽  
Author(s):  
Carlos F. Quirós

The cytological behavior during meiosis of extra constitutive heterochromatin and the effects of such additions to the tomato genome were investigated. The main source of extra heterochromatin was 2S∙2S, a completely heterochromatic isochromosome carrying a nucleolar organizer in each of its arms. Meiotic behavior of a half-heterochromatic, tertiary chromosome 5L∙2S in the presence of 2S∙2S was studied. Wehn 2S∙2S chromosomes were present in more than two doses, achiasmatic simultaneous pairing of three, four and five arms of these chromosomes was observed. "Ectopic" pairing of 2S∙2S with heterochromatin of nonhomologous chromosomes was also observed. It is postulated that "ectopic" pairing neutralized in part the high percentage of anaphase I equational division of the 2S∙2S chromosomes. In some individuals the 2S∙2S chromosome was found organizing an extra, smaller-than-normal nucleolus during meiotic prophase. Conspicuous nucleolar vacuoles were also observed in the progenies of plants carrying 2S∙2S extra chromosomes. It was found that the 2S∙2S chromosome alters diakinesis association and segregation of the 5L∙7S chromosome when both are in the same cell. 2S∙2S chromosomes reduced chiasma frequency, which was also accompanied by reduction of crossing-over for some of the tested gene intervals when 2S∙2S was present in one dose. No effects of 2S∙2S on chromosome pairing of interspecific hybrids were detected. Another effect produced by the addition of 2S∙2S chromosomes was expressed as leaf necrosis in some individuals.


2017 ◽  
Vol 216 (2) ◽  
pp. 393-408 ◽  
Author(s):  
Benjamin Alleva ◽  
Nathan Balukoff ◽  
Amy Peiper ◽  
Sarit Smolikove

In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.



Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 27-31 ◽  
Author(s):  
K Mekada ◽  
M Harada ◽  
L K Lin ◽  
K Koyasu ◽  
P M Borodin ◽  
...  

Pairing of X and Y chromosomes at meiotic prophase and the G- and C-banding patterns and nucleolar organizer region (NOR) distribution were analyzed in Microtus kikuchii. M. kikuchii is closely related to M. oeconomus and M. montebelli, karyologically and systematically. The formation of a synaptonemal complex between the X and Y chromosomes at pachytene and end-to-end association at diakinesis – metaphase I are only observed in three species in the genus Microtus; M. kikuchii, M. oeconomus, and M. montebelli. All the other species that have been studied so far have had asynaptic X–Y chromosomes. These data confirm that M. kikuchii, M. oeconomus, and M. montebelli are very closely related, and support the separation of asynaptic and synaptic groups on the phylogenetic tree.Key words: Microtus kikuchii, Microtus phylogeny, karyotype, synaptic sex chromosomes, synaptonemal complex.



Genome ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 1099-1106 ◽  
Author(s):  
M. C. Kerlan ◽  
A. M. Chevre ◽  
F. Eber

In interspecific hybrids produced between a transgenic rapeseed, an allotetraploid species, resistant to herbicide, phosphinotricin, and five diploid related species, the risk for gene introgression in weed genomes was explored through cytogenetic and bar gene characterizations. Among the 75 hybrids studied, most had the expected triploid structure, with the exception of B. napus – B. oleracea amphidiploid plants and one B. napus – S. arvensis amphidiploid plant. In triploid hybrid plants, the reciprocal hybrids did not exhibit any difference in their meiotic behavior. The comparison of the percentage of chromosome pairing in the hybrids with that of haploid rapeseed permit to conclude that allosyndesis between AC genomes and related species genomes took place. This possibility of recombination was confirmed by the presence of multivalent associations in all the interspecific hybrids. Nevertheless, in B. napus – B. adpressa hybrids a control of chromosome pairing seemed to exist. The possibility of amphidiploid plant production directly obtained in the F1 generation increased the risk of gene dispersal. The B. napus – B. oleracea amphidiploid plant presented a meiotic behavior more regular than that of the B. napus – S. arvensis amphidiploid plant. Concerning the herbicide bar gene characterization, the presence of the gene detected by DNA amplification was correlated with herbicide resistance, except for two plants. Different hypotheses were proposed to explain these results. A classification of the diploid species was established regarding their gene dispersal risk based on the rate of allosyndesis between chromosomes of AC genomes of rapeseed and the genomes of the related species.Key words: Brassicaceae, transgenic rapeseed, risk assessment, interspecific hybrids, chromosome pairing, bar gene characterization.



2020 ◽  
Vol 38 (4) ◽  
pp. 382-386
Author(s):  
Sara I de Oliveira ◽  
Elba H Ribeiro ◽  
Nádia F Moreira ◽  
Larissa S Vianna ◽  
Telma NS Pereira

ABSTRACT This study was performed to evaluate the meiotic behavior and fertility of four hybrids obtained from the crossing of Capsicum baccatum and its botanical forms with Capsicum chinense and Capsicum frutescens. We aimed to identify the causes of the low fertility in interspecific hybrids involving species from different gene pools of Capsicum. Hybrid flower buds were fixed in fixative solution and the slides were prepared using 1%-acetic carmine solution. Meiosis was observed in all phases and the main meiotic abnormality observed was the complete or partial lack of chromosome pairing, indicating that the species are either genetically distant or that some asynaptic gene was present in the hybrids. Meiotic index (MI), the frequency of unreduced gametes (type 2n), and pollen viability were estimated. MI and pollen viability of the hybrids were low. We concluded that due to the complete or partial lack of chromosome pairing, the species used in the hybrid combinations are genetically distant. We also noticed that the low-fertility hybrids are a consequence of the lack of chromosome homology between the two genomes involved. The hybrids were considered partially sterile since their pollen viability percentage was lower than 50%.



1984 ◽  
Vol 26 (5) ◽  
pp. 564-568 ◽  
Author(s):  
Orlando Moreira-Filho ◽  
Luiz Antonio Carlos Bertollo ◽  
Pedro Manoel Galetti Jr.

Nucleolar organizer regions (NORs) were studied in mitotic chromosomes of four species of fish of family Parodontidae: Parodon tortuosus, Apareiodon affinis, Apareiodon ibitiensis, and Apareiodon piracicabae. All four species exhibited only a single nucleolar chromosome pair in their karyotypes. Intraspecific differences were observed in the size of these chromosomes; however, these were not very clear for A. affinis and A. piracicabae, Apareiodon piracicabae exhibited two clearly visible NORs in each of the nucleolar chromosomes, which was the only configuration practically found in this species. This trait therefore predominates in a homozygous condition in the population investigated. Regions of constitutive heterochromatin adjacent to the two NORs were detected. Possible mechanisms that may have originated the two NORs are discussed.Key words: nucleolar organizing regions, fish.



1970 ◽  
Vol 12 (4) ◽  
pp. 790-794 ◽  
Author(s):  
Chi-Chang Chen ◽  
Pryce B. Gibson

Both Trifolium repens (2n = 32) and T. nigrescens (2n = 16) formed bivalents during meiosis. However, their triploid hybrid showed an average of 4.27 trivalents per microsporocyte at metaphase I. The frequency of trivalents in the hybrid between T. nigrescens and autotetraploid T. occidentale (2n = 32) was 5.69. The data are interpreted to indicate: (1) a possible autotetraploid origin of T. repens; and (2) a close phylogenetic relationship among T. repens, T. nigrescens and T. occidentale.



1987 ◽  
Vol 105 (1) ◽  
pp. 93-103 ◽  
Author(s):  
P B Moens ◽  
C Heyting ◽  
A J Dietrich ◽  
W van Raamsdonk ◽  
Q Chen

The axial cores of chromosomes in the meiotic prophase nuclei of most sexually reproducing organisms play a pivotal role in the arrangement of chromatin, in the synapsis of homologous chromosomes, in the process of genetic recombination, and in the disjunction of chromosomes. We report an immunogold analysis of the axial cores and the synaptonemal complexes (SC) using two mouse monoclonal antibodies raised against isolated rat SCs. In Western blots of purified SCs, antibody II52F10 recognizes a 30- and a 33-kD peptide (Heyting, C., P. B. Moens, W. van Raamsdonk, A. J. J. Dietrich, A. C. G. Vink, and E. J. W. Redeker, 1987, Eur. J. Cell Biol., 43: 148-154). In spreads of rat spermatocyte nuclei it produces gold grains over the cores of autosomal and sex chromosomes. The cores label lightly during the chromosome pairing stage (zygotene) of early meiotic prophase and they become more intensely labeled when they are parallel aligned as the lateral elements of the SC during pachytene (55 grains/micron SC). Statistical analysis of electronically recorded gold grain positions shows that the two means of the bimodal gold grain distribution coincide with the centers of the lateral elements. At diplotene, when the cores separate, the antigen is still detected along the length of the core and the enlarged ends are heavily labeled. Shadow-cast SC preparations show that recombination nodules are not labeled. The continued presence suggests that the antigens serve a continuing function in the cores, such as chromatin binding, and/or structural integrity. Antibody III15B8, which does not recognize the 30- and 33-kD peptides, produces gold grains predominantly between the lateral elements. The grain distribution is bimodal with the mean of each peak just inside the pairing face of the lateral element. The antigen is present where and while the cores of the homologous chromosomes are paired. From the location and the timing, it is assumed that the antigen recognized by III15B8 functions in chromosome pairing at meiotic prophase. The two anti-rat SC antibodies label rat and mouse SCs but not rabbit or dog SCs. A positive control using human CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) anti-centromere serum gives equivalent labeling of SC centromeres in the rat, mouse, rabbit, and dog. It is concluded that the SC antigens recognized by II52F10 and III15B8 are not widely conserved. The two antibodies do not bind to cellular or nuclear components of somatic cells.(ABSTRACT TRUNCATED AT 400 WORDS)



1977 ◽  
Vol 19 (4) ◽  
pp. 651-656 ◽  
Author(s):  
J. M. Leggett

Chromosome pairing and the frequency of secondary associations in two aneupolyhaploid plants of A. sativa are described. There was little evidence of pairing between homoeologous chromosomes in either plant. The results are discussed in relation to the genetic control of bivalent pairing in A. sativa and the possible divergence between the constituent genomes.



Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 860-867 ◽  
Author(s):  
Kevin B. Jensen ◽  
Richard R.-C. Wang

Two accessions of Elymus caucasicus (Koch) Tzvelev and three accessions of Elymus longearistatus (Boiss.) Tzvelev were studied to determine the meiotic behavior and chromosome pairing in the two taxa, their interspecific hybrid, and their hybrids with various "analyzer" parents. Interspecific and intergeneric hybrids of the target taxa were obtained with the following analyzer species: Pseudoroegneria spicata (Pursh) A. Löve (2n = 14, SS), Pseudoroegneria libanotica (Hackel) D. R. Dewey (2n = 14, SS), Hordeum violaceum Boiss. &Hohenacker (2n = 14, HH) (= Critesion violaceum (Boiss. &Hohenacker) A. Löve), Elymus lanceolatus (Scribn. &Smith) Gould (2n = 28, SSHH), Elymus abolinii (Drob.) Tzvelev (2n = 28, SSYY), Elymus pendulinus (Nevski) Tzvelev (2n = 28, SSYY), Elymus fedtschenkoi Tzvelev (2n = 28, SSYY), Elymus panormitanus (Parl.) Tzvelev (2n = 28, SSYY), and Elymus drobovii (Nevski) Tzvelev (2n = 42, SSHHYY). Cytological analysis of their F1 hybrids showed that E. caucasicus and E. longearistatus were allotetraploids comprising the same basic genomes. Chromosome pairing in the E. caucasicus × P. libanotica hybrid demonstrated that the target taxa contained the S genome, based on 6.1 bivalents per cell. The lack of chromosome pairing, less than one bivalent per cell, in the E. longearistatus × H. violaceum hybrid showed that the H genome was absent. Increased pairing in the tetraploid and pentaploid hybrids when the Y genome was introduced indicated that the second genome in the two taxa was a segmental homolog of the Y genome. The S and Y genomes in E. caucasicus and E. longearistatus have diverged from each other and from those in many of the eastern and central Asian SY tetraploids.Key words: genome, meiosis, chromosome pairing, morphology, hybrid, Triticeae.



Sign in / Sign up

Export Citation Format

Share Document