scholarly journals Meiotic behavior and fertility of Capsicum interspecific hybrids

2020 ◽  
Vol 38 (4) ◽  
pp. 382-386
Author(s):  
Sara I de Oliveira ◽  
Elba H Ribeiro ◽  
Nádia F Moreira ◽  
Larissa S Vianna ◽  
Telma NS Pereira

ABSTRACT This study was performed to evaluate the meiotic behavior and fertility of four hybrids obtained from the crossing of Capsicum baccatum and its botanical forms with Capsicum chinense and Capsicum frutescens. We aimed to identify the causes of the low fertility in interspecific hybrids involving species from different gene pools of Capsicum. Hybrid flower buds were fixed in fixative solution and the slides were prepared using 1%-acetic carmine solution. Meiosis was observed in all phases and the main meiotic abnormality observed was the complete or partial lack of chromosome pairing, indicating that the species are either genetically distant or that some asynaptic gene was present in the hybrids. Meiotic index (MI), the frequency of unreduced gametes (type 2n), and pollen viability were estimated. MI and pollen viability of the hybrids were low. We concluded that due to the complete or partial lack of chromosome pairing, the species used in the hybrid combinations are genetically distant. We also noticed that the low-fertility hybrids are a consequence of the lack of chromosome homology between the two genomes involved. The hybrids were considered partially sterile since their pollen viability percentage was lower than 50%.

Genome ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 1099-1106 ◽  
Author(s):  
M. C. Kerlan ◽  
A. M. Chevre ◽  
F. Eber

In interspecific hybrids produced between a transgenic rapeseed, an allotetraploid species, resistant to herbicide, phosphinotricin, and five diploid related species, the risk for gene introgression in weed genomes was explored through cytogenetic and bar gene characterizations. Among the 75 hybrids studied, most had the expected triploid structure, with the exception of B. napus – B. oleracea amphidiploid plants and one B. napus – S. arvensis amphidiploid plant. In triploid hybrid plants, the reciprocal hybrids did not exhibit any difference in their meiotic behavior. The comparison of the percentage of chromosome pairing in the hybrids with that of haploid rapeseed permit to conclude that allosyndesis between AC genomes and related species genomes took place. This possibility of recombination was confirmed by the presence of multivalent associations in all the interspecific hybrids. Nevertheless, in B. napus – B. adpressa hybrids a control of chromosome pairing seemed to exist. The possibility of amphidiploid plant production directly obtained in the F1 generation increased the risk of gene dispersal. The B. napus – B. oleracea amphidiploid plant presented a meiotic behavior more regular than that of the B. napus – S. arvensis amphidiploid plant. Concerning the herbicide bar gene characterization, the presence of the gene detected by DNA amplification was correlated with herbicide resistance, except for two plants. Different hypotheses were proposed to explain these results. A classification of the diploid species was established regarding their gene dispersal risk based on the rate of allosyndesis between chromosomes of AC genomes of rapeseed and the genomes of the related species.Key words: Brassicaceae, transgenic rapeseed, risk assessment, interspecific hybrids, chromosome pairing, bar gene characterization.


1976 ◽  
Vol 18 (2) ◽  
pp. 325-337 ◽  
Author(s):  
Carlos F. Quirós

The cytological behavior during meiosis of extra constitutive heterochromatin and the effects of such additions to the tomato genome were investigated. The main source of extra heterochromatin was 2S∙2S, a completely heterochromatic isochromosome carrying a nucleolar organizer in each of its arms. Meiotic behavior of a half-heterochromatic, tertiary chromosome 5L∙2S in the presence of 2S∙2S was studied. Wehn 2S∙2S chromosomes were present in more than two doses, achiasmatic simultaneous pairing of three, four and five arms of these chromosomes was observed. "Ectopic" pairing of 2S∙2S with heterochromatin of nonhomologous chromosomes was also observed. It is postulated that "ectopic" pairing neutralized in part the high percentage of anaphase I equational division of the 2S∙2S chromosomes. In some individuals the 2S∙2S chromosome was found organizing an extra, smaller-than-normal nucleolus during meiotic prophase. Conspicuous nucleolar vacuoles were also observed in the progenies of plants carrying 2S∙2S extra chromosomes. It was found that the 2S∙2S chromosome alters diakinesis association and segregation of the 5L∙7S chromosome when both are in the same cell. 2S∙2S chromosomes reduced chiasma frequency, which was also accompanied by reduction of crossing-over for some of the tested gene intervals when 2S∙2S was present in one dose. No effects of 2S∙2S on chromosome pairing of interspecific hybrids were detected. Another effect produced by the addition of 2S∙2S chromosomes was expressed as leaf necrosis in some individuals.


2011 ◽  
Vol 11 (1) ◽  
pp. 103 ◽  
Author(s):  
Annaliese S Mason ◽  
Matthew N Nelson ◽  
Guijun Yan ◽  
Wallace A Cowling

1970 ◽  
Vol 12 (4) ◽  
pp. 790-794 ◽  
Author(s):  
Chi-Chang Chen ◽  
Pryce B. Gibson

Both Trifolium repens (2n = 32) and T. nigrescens (2n = 16) formed bivalents during meiosis. However, their triploid hybrid showed an average of 4.27 trivalents per microsporocyte at metaphase I. The frequency of trivalents in the hybrid between T. nigrescens and autotetraploid T. occidentale (2n = 32) was 5.69. The data are interpreted to indicate: (1) a possible autotetraploid origin of T. repens; and (2) a close phylogenetic relationship among T. repens, T. nigrescens and T. occidentale.


2008 ◽  
Vol 133 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Pablo Bolaños-Villegas ◽  
Shih-Wen Chin ◽  
Fure-Chyi Chen

The development of new cultivars in Doritaenopsis Guillaum. & Lami orchids is often hindered by factors such as low seed count in hybrids. Cytological study may offer the ability to develop new hybrids by revealing cultivars with good chromosome pairing and high pollen viability, which are somewhat difficult to obtain under current breeding programs. Cross pollination, pollen viability, and chromosomal behavior during meiosis were analyzed to reveal the relation between seed fertility and capsule set in Doritaenopsis hybrids. The number of mature capsules harvested and their relative seed content were used as indices of crossing availability. The results of meiosis were evaluated according to pollen viability detected by fluorescein diacetate and quantification of sporad types by acid fuchsin staining. Chromosome number and pairing at meiosis were observed in root tips or in samples of pollen mother cells. A positive relation was found among high seed set, high frequency of viable tetrads, high degree of chromosome pairing, and low frequency of chromosomal aberrations such as inversions and translocations. On the basis of these factors, three types of hybrids could be distinguished. In type one hybrids, chromosomes paired as bivalents, pollen mother cells divided into tetrads, and capsule setting occurred after pollination of pollen acceptors. In type two hybrids, chromosomes remained mainly as univalents that developed into micromeiocytes, pollen mother cell division was disrupted, and seed recovery was low after pollination. Type three hybrids showed chromosomes paired mostly as multivalents, chromosome bridges, pollen mother cell division with massive failure, and little fertility. In Doritaenopsis orchids, high pollen viability and high fertility depends on a high frequency of normal tetrads, and low seed set in cross-pollination is predicted with micronuclei in the end products of meiosis. The occurrence of chromosomal aberrations may suggest a process of genome differentiation that could compromise breeding efforts if not taken into consideration.


2011 ◽  
Vol 11 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Carlos Eduardo da Silva Monteiro ◽  
Telma Nair Santana Pereira ◽  
Karina Pereira de Campos

The objective of this study was the reproductive characterization of Capsicum accessions as well as of interspecific hybrids, based on pollen viability. Hybrids were obtained between Capsicum species. Pollen viability was high in most accessions, indicating that meiosis is normal, resulting in viable pollen grains. The pollen viability of species C. pubescens was the lowest (27 %). The interspecific hybrids had varying degrees of pollen viability, from fertile combinations (C. chinense x C. frutescens and C. annuum x C. baccatum) to male sterile combinations. Pollen viability also varied within the hybrid combination according to accessions used in the cross. Results indicate that male sterility is one of the incompatibility barriers among Capsicum species since hybrids can be established, but may be male sterile.


1977 ◽  
Vol 19 (4) ◽  
pp. 651-656 ◽  
Author(s):  
J. M. Leggett

Chromosome pairing and the frequency of secondary associations in two aneupolyhaploid plants of A. sativa are described. There was little evidence of pairing between homoeologous chromosomes in either plant. The results are discussed in relation to the genetic control of bivalent pairing in A. sativa and the possible divergence between the constituent genomes.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 860-867 ◽  
Author(s):  
Kevin B. Jensen ◽  
Richard R.-C. Wang

Two accessions of Elymus caucasicus (Koch) Tzvelev and three accessions of Elymus longearistatus (Boiss.) Tzvelev were studied to determine the meiotic behavior and chromosome pairing in the two taxa, their interspecific hybrid, and their hybrids with various "analyzer" parents. Interspecific and intergeneric hybrids of the target taxa were obtained with the following analyzer species: Pseudoroegneria spicata (Pursh) A. Löve (2n = 14, SS), Pseudoroegneria libanotica (Hackel) D. R. Dewey (2n = 14, SS), Hordeum violaceum Boiss. &Hohenacker (2n = 14, HH) (= Critesion violaceum (Boiss. &Hohenacker) A. Löve), Elymus lanceolatus (Scribn. &Smith) Gould (2n = 28, SSHH), Elymus abolinii (Drob.) Tzvelev (2n = 28, SSYY), Elymus pendulinus (Nevski) Tzvelev (2n = 28, SSYY), Elymus fedtschenkoi Tzvelev (2n = 28, SSYY), Elymus panormitanus (Parl.) Tzvelev (2n = 28, SSYY), and Elymus drobovii (Nevski) Tzvelev (2n = 42, SSHHYY). Cytological analysis of their F1 hybrids showed that E. caucasicus and E. longearistatus were allotetraploids comprising the same basic genomes. Chromosome pairing in the E. caucasicus × P. libanotica hybrid demonstrated that the target taxa contained the S genome, based on 6.1 bivalents per cell. The lack of chromosome pairing, less than one bivalent per cell, in the E. longearistatus × H. violaceum hybrid showed that the H genome was absent. Increased pairing in the tetraploid and pentaploid hybrids when the Y genome was introduced indicated that the second genome in the two taxa was a segmental homolog of the Y genome. The S and Y genomes in E. caucasicus and E. longearistatus have diverged from each other and from those in many of the eastern and central Asian SY tetraploids.Key words: genome, meiosis, chromosome pairing, morphology, hybrid, Triticeae.


Sign in / Sign up

Export Citation Format

Share Document