Biochemical data bearing on the relationship between the genome of Triticum urartu and the A and B genomes of the polyploid wheats

Genome ◽  
1988 ◽  
Vol 30 (4) ◽  
pp. 576-581 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira ◽  
B. L. Jones

To determine whether the Triticum urartu genome is more closely related to the A or B genome of the polyploid wheats, the amino acid sequence of its purothionin was compared to the amino acid sequences of the purothionins in Triticum monococcum, Triticum turgidum, and Triticum aestivum. The residue sequence of the purothionin from T. urartu differs by five and six amino acid substitutions respectively from the α1 and α2 forms coded for by genes in the B and D genomes, and is identical to the β form specified by a gene in the A genome. Therefore, the T. urartu purothionin is either coded by a gene in the A genome or a chromosome set highly homologous to it. The results demonstrate that at least a portion of the T. urartu and T. monococcum genomes is homologous and probably identical. A variety of other studies have also shown that T. urartu is very closely related to T. monococcum and, in all likelihood, also possesses the A genome. Therefore, it could be argued that either T. urartu and T. monococcum are the same species or that T. urartu rather than T. monococcum is the source of the A genome in T. turgidum and T. aestivum. Except for Johnson's results, our data and that of others suggest a revised origin of polyploid wheats. Specifically, the list of six putative B genome donor species is reduced to five, all members of the Sitopsis section of the genus Aegilops.Key words: Triticum monococcum, Triticum urartu, polyploid wheats, genomes A and B, purothionins.

Genome ◽  
2006 ◽  
Vol 49 (4) ◽  
pp. 297-305 ◽  
Author(s):  
A Brandolini ◽  
P Vaccino ◽  
G Boggini ◽  
H Özkan ◽  
B Kilian ◽  
...  

The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.Key words: A genome, Triticum, genetic relationships, AFLP.


Genome ◽  
1987 ◽  
Vol 29 (5) ◽  
pp. 722-737 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira

The phylogeny of the polyploid wheats has been the subject of intense research and speculation during the past 70 years. Various experimental approaches have been employed to ascertain the diploid progenitors of these wheats. The species having donated the D genome to Triticum aestivum has been unequivocally identified as Aegilops squarrosa. On the basis of evidence from many studies, Triticum monococcum has been implicated as the source of the A genome in both Triticum turgidum and Triticum aestivum. However, numerous studies since 1968 have shown that Triticum urartu is very closely related to Triticum monococcum and that it also carries the A genome. These studies have prompted the speculation that Triticum urartu may be the donor of this chromosome set to the polyploid wheats. The donor of the B genome to Triticum turgidum and Triticum aestivum remains equivocal and controversial. Six different diploid species have been implicated as putative B genome donors: Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Aegilops speltoides, and Triticum urartu. Until recently, evidence presented by different researchers had not permitted an unequivocal identification of the progenitor of the B genome in polyploid wheats. Recent studies, involving all diploid and polyploid wheats and putative B genome donors, lead to the conclusion that Aegilops speltoides and Triticum urartu can be excluded as B genome donors and that Aegilops searsii is the most likely source of this chromosome set. The possibility of the B genome having arisen from an AAAA autotetraploid or having a polyphyletic origin is discussed. Key words: phylogeny; Triticum aestivum; Triticum turgidum; A, B, and D genomes.


Genome ◽  
1990 ◽  
Vol 33 (3) ◽  
pp. 360-368 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira ◽  
B. L. Jones ◽  
G. L. Lookhart

For many years each of the species Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Aegilops speltoides, and Triticum urartu has been implicated as the donor of the B genome in the polyploid wheats. Biochemical and cytological data have revealed that T. urartu possesses a genome similar to that of T. monococcum, and therefore it may be the source of the A genome in T. turgidum and T. aestivum. This revelation therefore excludes T. urartu from the list of putative B-genome donors. To determine which of the remaining species is the source of the B chromosome set, the amino acid sequences of their purothionins were compared with that of the α1 purothionin coded for by the Pur-1B gene on chromosome 1 in the B genome of T. turgidum and T. aestivum. The residue sequences of this protein from Ae. bicornis, Ae. longissima, Ae. searsii, Ae. sharonensis, and Ae. speltoides differed by 1, 6, 1, 1, and 2 amino acid substitutions, respectively, from the α1 protein. These results suggest that either Ae. bicornis, Ae. searsii, or Ae. sharonensis was the most likely donor of the B genome. If the B genome in the polyploid wheats is monophyletic in origin, the collective findings of this and other investigations indicate that Ae. searsii is the most likely donor. The possibility that the B genome in the polyploid wheats could have a polyphyletic origin is also discussed.Key words: polyploid wheats, putative B-genome donors, purothionins, monophyletic, polyphyletic.


Genetics ◽  
1981 ◽  
Vol 99 (3-4) ◽  
pp. 495-512
Author(s):  
U Kushnir ◽  
G M Halloran

ABSTRACT A number of lines of evidence are advanced for the candidacy of Aegilops sharonensisEig as the donor of the B genome of wheat. The cytoplasm of Ae. shuronensis iscompatible with tetraploid wheat Triticum turgidum dicoccoides,as evidenced bythe high level of chromosome pairing and fertility of the amphiploid Ae. sharonensisx T. turgidum dicoccoides. Ae. sharonensischromosomes exhibit high levels of pairing with those of the B genome of wheat in hybrids with Ph-deficient hexaploid wheat and low levels of homoeologous pairing with T. monocmcumchromosomes.——The amphidiploid between Ae. sharonensisand T. monococcumis very similar to T. turgidum dicoccoidesin spike, spikelet and grain morphology. The karyotype of Ae. sharonensisresembles more closely that of extrapolated Bgenome karyotypes of wheat than do the karyotypes of other proposed B-genome donor species of Aegilops. Because of distinctiveness in cytological aftinity and karyotype morphology between Ae. sharonensisand Ae. longissima,a separate genome symbol Sshis proposed for the former species.


1976 ◽  
Vol 18 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Jan Dvořák

Triticum urartu (2n = 14) was crossed with T. aestivum lines ditelosomic for chromosomes of the A and B genomes. Except for telosome 4Aα, the rest of the telosomes of the A genome paired in these hybrids while telosomes of the B genome did not pair. This indicates that T. urartu cannot be the donor of the B genome of 4x and 6x wheat, but carries an A genome. Compared to the rest of the hybrids, pairing of T. urartu chromosomes was significantly reduced in hybrids deficient for chromosome arms 5AS or 5BS. It is suggested that this reduction in chromosome pairing resulted from the absence of genes which promote homoelogous pairing and which are normally present on chromosome arms 5AS and 5BS in Chinese Spring.


Genome ◽  
1993 ◽  
Vol 36 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Jan Dvořák ◽  
Pantaleo di Terlizzi ◽  
Hong-Bin Zhang ◽  
Paolo Resta

Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.Key words: phylogeny, Triticum, Aegilops, repeated nucleotide sequences.


Genome ◽  
1988 ◽  
Vol 30 (1) ◽  
pp. 36-43 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira

To help elucidate the origin of the B genome in polyploid wheats, karyotypes of Triticum turgidum, Triticum monoccum, and all six purported B genome donors were compared. The analysis utilized a common cytological procedure that employed the most advanced equipment for the measurement of chromosome lengths at metaphase in root tip cells. A comparison of the karyotypes of T. turgidum and T. monococcum permitted the identification of B genome chromosomes of T. turgidum. These consist of two SAT pairs, one ST pair, three SM pairs, and one M pair of homologues. Comparisons of the chromosomes of the B genome of T. turgidum with the karyotypes of the six putative B genome donors showed that only the karyotype of Aegilops searsii was similar to the one deduced for the donor of the B genome in T. turgidum, suggesting that Ae. searsii is, therefore, the most likely donor of the B genome to the polyploid wheats. Support for this conclusion has been derived from geographic, DNA-hybridization, karyotype, morphological, and protein data reported since 1977. Reasons why the B genome donor has not been unequivocally identified are discussed.Key words: phylogeny, karyotypes, Triticum turgidum, Triticum monococcum, B genome, B genome donors.


1996 ◽  
Vol 76 (3) ◽  
pp. 887-926 ◽  
Author(s):  
H. A. Fozzard ◽  
D. A. Hanck

Cardiac and nerve Na channels have broadly similar functional properties and amino acid sequences, but they demonstrate specific differences in gating, permeation, ionic block, modulation, and pharmacology. Resolution of three-dimensional structures of Na channels is unlikely in the near future, but a number of amino acid sequences from a variety of species and isoforms are known so that channel differences can be exploited to gain insight into the relationship of structure to function. The combination of molecular biology to create chimeras and channels with point mutations and high-resolution electrophysiological techniques to study function encourage the idea that predictions of structure from function are possible. With the goal of understanding the special properties of the cardiac Na channel, this review examines the structural (sequence) similarities between the cardiac and nerve channels and considers what is known about the relationship of structure to function for voltage-dependent Na channels in general and for the cardiac Na channels in particular.


2011 ◽  
Vol 378-379 ◽  
pp. 157-160
Author(s):  
Jian Xiu Guo ◽  
Ni Ni Rao

Understanding the relationship between amino acid sequences and folding rates of proteins is an important challenge in computational and molecular biology. All existing algorithms for predicting protein folding rates have never taken into account the sequence coupling effects. In this work, a novel algorithm was developed for predicting the protein folding rates from amino acid sequences. The prediction was achieved on the basis of dipeptide composition, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. Based on a non-redundant dataset of 99 proteins, the proposed method was found to provide an excellent agreement between the predicted and experimental folding rates of proteins when evaluated with the jackknife test. The correlation coefficient was 87.7% and the standard error was 2.04, which indicated the important contribution from sequence coupling effects to the determination of protein folding rates.


Sign in / Sign up

Export Citation Format

Share Document