Linear plasmids that integrate into mitochondrial DNA in Neurospora

Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 155-159 ◽  
Author(s):  
H. Bertrand ◽  
A. J. F. Griffiths

In some field isolates of Neurospora from Hawaii and India, senescence is induced by integration of linear DNA plasmids, kalilo and maranhar, respectively, into mitochondrial (mt) DNA. Although the two plasmids show little homology at the DNA level, both have inverted long terminal repeats, and each potentially encodes a DNA polymerase and a RNA polymerase. Both plasmids generate very long inverted repeats of mtDNA at their ends upon integration into mitochondrial chromosomes. Hence, they appear to integrate by a mechanism that involves pairing of both ends of the plasmid with short stretches of homologous nucleotide sequences in mtDNA. This recombinogenic association apparently generates an origin for an unscheduled round of replication of mtDNA. In the process, the resulting two copies of the mitochondrial chromosome are joined to opposite ends of the plasmid. A model for the senescence-associated accumulation of mtDNAs with plasmid insertion sequences is proposed on the basis of common features that characterize senescence in a variety of filamentous fungi.Key words: Neurospora, senescence, plasmids, mitochondria.

Mitochondrion ◽  
2015 ◽  
Vol 24 ◽  
pp. 22-31 ◽  
Author(s):  
Eugenia Sanchez-Sandoval ◽  
Corina Diaz-Quezada ◽  
Gilberto Velazquez ◽  
Luis F. Arroyo-Navarro ◽  
Norineli Almanza-Martinez ◽  
...  

1995 ◽  
Vol 42 (3) ◽  
pp. 317-324 ◽  
Author(s):  
T K Biswas ◽  
P Sengupta ◽  
R Green ◽  
P Hakim ◽  
B Biswas ◽  
...  

Mitochondrial DNA polymerase from Saccharomyces cerevisiae, purified 3500 fold, was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into three polypeptides. The major 150 kDa polypeptide was probably the catalytic subunit of the mitochondrial (mt) DNA polymerase and the other two polypeptides could be either proteolytic cleavage products of the polymerase, other subunits of the enzyme or protein contaminants. The mtDNA polymerase preferred an A+T-rich DNA template and did not require any RNA primer for DNA synthesis, at least under in vitro reaction conditions. It showed higher processivity on a double-stranded linear DNA template than on a single-stranded circular DNA template, and was capable of synthesizing at least about 1200 nucleotide primer-extended products without any major pause on a double-stranded DNA template.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1809-1824 ◽  
Author(s):  
Balaji Iyengar ◽  
John Roote ◽  
Ana Regina Campos

AbstractFrom a screen of pupal lethal lines of Drosophila melanogaster we identified a mutant strain that displayed a reproducible reduction in the larval response to light. Moreover, this mutant strain showed defects in the development of the adult visual system and failure to undergo behavioral changes characteristic of the wandering stage. The foraging third instar larvae remained in the food substrate for a prolonged period and died at or just before pupariation. Using a new assay for individual larval photobehavior we determined that the lack of response to light in these mutants was due to a primary deficit in locomotion. The mutation responsible for these phenotypes was mapped to the lethal complementation group l(2)34Dc, which we renamed tamas (translated from Sanskrit as “dark inertia”). Sequencing of mutant alleles demonstrated that tamas codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-γ125).


Biochemistry ◽  
2000 ◽  
Vol 39 (7) ◽  
pp. 1702-1708 ◽  
Author(s):  
Allison A. Johnson ◽  
Yu-chih Tsai ◽  
Steven W. Graves ◽  
Kenneth A. Johnson

Sign in / Sign up

Export Citation Format

Share Document