Sequential chromosome banding and in situ hybridization analysis

Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Jiming Jiang ◽  
Bikram S. Gill

Different combinations of chromosome N- or C-banding with in situ hybridization (ISH) or genomic in situ hybridization (GISH) were sequentially performed on metaphase chromosomes of wheat. A modified N-banding–ISH/GISH sequential procedure gave best results. Similarly, a modified C-banding – ISH/GISH procedure also gave satisfactory results. The variation of the hot acid treatment in the standard chromosome N- or C-banding procedures was the major factor affecting the resolution of the subsequent ISH and GISH. By the sequential chromosome banding – ISH/GISH analysis, multicopy DNA sequences and the breakpoints of wheat–alien translocations were directly allocated to specific chromosomes of wheat. The sequential chromosome banding– ISH/GISH technique should be widely applicable in genome mapping, especially in cytogenetic and molecular mapping of heterochromatic and euchromatic regions of plant and animal chromosomes.Key words: N-banding, C-banding, in situ hybridization, genomic in situ hybridization.

Genome ◽  
1995 ◽  
Vol 38 (5) ◽  
pp. 946-950 ◽  
Author(s):  
Juan Zhang ◽  
Bernd Friebe ◽  
Bikram S. Gill

Genomic in situ hybridization to somatic metaphase chromosomes of hexaploid wheat cv. Chinese Spring using biotinylated maize genomic DNA as a probe revealed the existence of amplified maize DNA sequences in five pairs of chromosomes. The in situ hybridization sites were located on chromosomes 1A, 7A, 2B, 3B, and 7B. One pair of in situ hybridization sites was also observed in hexaploid oat. The locations and sizes of in situ hybridization sites varied among progenitor species.Key words: Triticum aestivum, Zea mays, shared DNA sequences, genomic in situ hybridization.


Genome ◽  
1994 ◽  
Vol 37 (5) ◽  
pp. 717-725 ◽  
Author(s):  
Jiming Jiang ◽  
Bikram S. Gill

Nonisotopic in situ hybridization (ISH) was introduced in plants in 1985. Since then the technique has been widely used in various areas of plant genome mapping. ISH has become a routine method for physical mapping of repetitive DNA sequences and multicopy gene families. ISH patterns on somatic metaphase chromosomes using tandemly repeated sequences provide excellent physical markers for chromosome identification. Detection of low or single copy sequences were also reported. Genomic in situ hybridization (GISH) was successfully used to analyze the chromosome structure and evolution of allopolyploid species. GISH also provides a powerful technique for monitoring chromatin introgession during interspecific hybridization. A sequential chromosome banding and ISH technique was developed. The sequential technique is very useful for more precise and efficient mapping as well as cytogenetic determination of genomic affinities of individual chromosomes in allopolyploid species. A critical review is made on the present resolution of the ISH technique and the future outlook of ISH research is discussed.Key words: in situ hybridization, physical mapping, genome mapping, molecular cytogenetics.


Author(s):  
Barbara Trask ◽  
Susan Allen ◽  
Anne Bergmann ◽  
Mari Christensen ◽  
Anne Fertitta ◽  
...  

Using fluorescence in situ hybridization (FISH), the positions of DNA sequences can be discretely marked with a fluorescent spot. The efficiency of marking DNA sequences of the size cloned in cosmids is 90-95%, and the fluorescent spots produced after FISH are ≈0.3 μm in diameter. Sites of two sequences can be distinguished using two-color FISH. Different reporter molecules, such as biotin or digoxigenin, are incorporated into DNA sequence probes by nick translation. These reporter molecules are labeled after hybridization with different fluorochromes, e.g., FITC and Texas Red. The development of dual band pass filters (Chromatechnology) allows these fluorochromes to be photographed simultaneously without registration shift.


Genome ◽  
1992 ◽  
Vol 35 (4) ◽  
pp. 551-559 ◽  
Author(s):  
S. M. Albini ◽  
T. Schwarzacher

Surface-spread pollen mother cells at meiotic prophase from Secale cereale (rye) were used for fluorescent DNA:DNA in situ localization of two tandemly repeated DNA sequences: pTa71, a wheat rDNA clone, and pSc119.2, a cloned 120-bp repeat from rye heterochromatin. The fluorescent hybridization signal, consisting of many yellow-green dots, was closely associated with the bivalent axes, corresponding to the synaptonemal complex, and located in the surrounding chromatin. The rDNA signal was associated with one bivalent, the smallest of the seven, at a distance about 13% of the bivalent length from the telomere. This corresponded to the position of the nucleolar organizing region of silver-stained synaptonemal complexes analyzed under the electron microscope and published data for somatic metaphase chromosomes. The relative length of the axis covered with the rDNA signal is less than expected from somatic metaphases, but it corresponds more closely to the proportion of the sequences in the genome. The hybridization signal with the 120-bp repeat was located mainly at the telomeric regions of several bivalents that showed thickenings of the axis after DAPI staining, probably corresponding to somatic C-bands. These major and some minor intercalary sites agree with the distribution of the 120-bp repeat in somatic metaphase. Fluorescent in situ hybridization to plant surface-spread pachytene chromosomes, which can be obtained in large numbers, has great potential for studying meiotic prophase, high-resolution mapping of DNA sequences, and investigating the relationship of DNA sequences to the synaptonemal complex.Key words: in situ hybridization, cereals, pachytene, meiosis, synaptonemal complex, physical mapping.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 513B-513
Author(s):  
Anfu Hou ◽  
Ellen B. Peffley

Introgression of genes in species crosses can be observed morphologically in backcrossed or selfed progenies, but the phenotype does not give information about the movement of DNAs. Cytogenetic markers allow for visualization of specific DNAs in a genome. Few cytogenetic markers are available in onion to monitor the introgression of DNA in species crosses. Genomic in situ hybridization (GISH) provides a way to locate unique DNA sequences contributed by parents. We are using GISH to monitor the movement of DNAs from A. fistulosum into A. cepa. Results of experiments using A. fistulosum as probe DNA, and A. cepa as blocking DNA will be reported. Also presented are hybridization sites observed in F1BC3 progeny of the GISH.


Author(s):  
Barbara J. F. Trask ◽  
Hillary Massa ◽  
Cynthia Friedman ◽  
Richard Esposito ◽  
Ger van den Engh ◽  
...  

The sites of specific DNA sequences can be fluorescently tagged by fluorescence in situ hybridization (FISH). Different sequences can be labeled with different fluorochromes so that their arrangement can be studied using epifluorescence microscopy. The distances between points on the same or different chromosomes can be determined easily in a large number of interphase nuclei or metaphase chromosomes. A variety of probe types, ranging from single-copy sequences to highly repeated sequences can be employed. Our work has focussed on the analysis of hybridization patterns in two dimensions using conventional fluorescence microscopy.We have used FISH to study various aspects of genome organization that are difficult to study using other techniques. Examples of these applications will be presented.FISH is now the method of choice for determining the chromosomal location of DNA sequences. DNA sequences can be positioned in the genome with <1:1000 accuracy (to a 3-Mbp region within a 3000-Mbp genome). Through FISH, the cytogenetic, physical and genetic maps of chromosomes can be linked.


Author(s):  
B. A. Hamkalo ◽  
Elizabeth R. Unger

This symposium brings together several approaches for the detection of specific nucleic acid sequences that have potential applications at the histochemical level.Trask et al. report on the use of fluorescence in situ hybridization (FISH) techniques to study the arrangement of DNA sequences in normal and diseaserelated chromosomes. The sites of specific DNA sequences can be fluorescently tagged. Different sequences can be labeled with different fluorochromes so that their arrangement can be studied using fluorescence microscopy. The distances between points on the same or different chromosomes can be determined in a large number of interphase nuclei or metaphase chromosomes. A variety of probe types, ranging from single-copy sequences to highly repeated sequences can be employed.Hamkalo and co-workers have used non-radioactive methods at the EM level for the detection of nucleic acid sequences by in situ hybridization. Analysis of metaphase chromosomes by electron microscopy allows for high resolution mapping of chromosomes. A variety of labelling procedures have been employed to illustrate the utility of high resolution nucleic acid sequence mapping in these preparations.


Sign in / Sign up

Export Citation Format

Share Document