A genetic and molecular analysis of an invectedDominant mutation in Drosophila melanogaster

Genome ◽  
1998 ◽  
Vol 41 (3) ◽  
pp. 381-390 ◽  
Author(s):  
A J Simmonds ◽  
J B Bell

The invected gene of Drosophila melanogaster is a homeobox-containing gene that is closely related to engrailed. A dominant gain of function allele, invectedDominant, was derived from mutagenesis of a dominant allele of vestigial, In(2R)vgW. A careful analysis of the phenotype of invectedDominant shows that it is associated with a transformation of the anterior compartment of the wing to a posterior fate. This transformation is normally limited to the wing blade itself and does not involve the remaining tissues derived from the wing imaginal disc, including the wing hinge and dorsal thorax of the fly. The ectopic expression of invected protein associated with invectedDominant correlates spatially with the normal expression pattern of vestigial in the wing imaginal disc, suggesting that control elements of vestigial are driving ectopic invected expression. This was confirmed by sequence analysis that shows that the dominant vestigial activity was eliminated by a deletion that removes the 3' portion of the vestigial coding region. This leaves a gene fusion wherein the vestigial enhancer elements are still juxtaposed immediately 5' to the invected transcriptional start site, but with the vg sequences harboring an additional lesion. Unlike recessive invected alleles, the invectedDominant allele produces an observable phenotype, and as such, should prove useful in determining the role of invected in patterning the wing imaginal disc. Genetic analysis has shown that mutations of polyhomeotic, a gene involved in regulating engrailed expression, cause a reproducible alteration in the invectedDominant phenotype. Finally, the invectedDominant allele should prove valuable for identifying and characterizing genes that are activated within the posterior compartment. A screen using various lacZ lines that are asymmetrically expressed in an anterior-posterior manner in the wing imaginal disc isolated one line that shows posterior-specific expression within the transformed anterior compartment.Key words: Drosophila, development, dominant mutation, ectopic, wings.

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 753-762
Author(s):  
Günther E Roth ◽  
Sigrid Wattler ◽  
Hartmut Bornschein ◽  
Michael Lehmann ◽  
Günter Korge

Abstract The Drosophila melanogaster gene Sgs-1 belongs to the secretion protein genes, which are coordinately expressed in salivary glands of third instar larvae. Earlier analysis had implied that Sgs-1 is located at the 25B2-3 puff. We cloned Sgs-1 from a YAC covering 25B2-3. Despite using a variety of vectors and Escherichia coli strains, subcloning from the YAC led to deletions within the Sgs-1 coding region. Analysis of clonable and unclonable sequences revealed that Sgs-1 mainly consists of 48-bp tandem repeats encoding a threonine-rich protein. The Sgs-1 inserts from single λ clones are heterogeneous in length, indicating that repeats are eliminated. By analyzing the expression of Sgs-1/lacZ fusions in transgenic flies, cis-regulatory elements of Sgs-1 were mapped to lie within 1 kb upstream of the transcriptional start site. Band shift assays revealed binding sites for the transcription factor fork head (FKH) and the factor secretion enhancer binding protein 3 (SEBP3) at positions that are functionally relevant. FKH and SEBP3 have been shown previously to be involved in the regulation of Sgs-3 and Sgs-4. Comparison of the levels of steady state RNA and of the transcription rates for Sgs-1 and Sgs-1/lacZ reporter genes indicates that Sgs-1 RNA is 100-fold more stable than Sgs-1/lacZ RNA. This has implications for the model of how Sgs transcripts accumulate in late third instar larvae.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1823-1838 ◽  
Author(s):  
Olivier Saget ◽  
Françoise Forquignon ◽  
Pedro Santamaria ◽  
Neel B Randsholt

Abstract We have analyzed the requirements for the multi sex combs (mxc) gene during development to gain further insight into the mechanisms and developmental processes that depend on the important trans-regulators forming the Polycomb group (PcG) in Drosophila melanogaster. mxc is allelic with the tumor suppressor locus lethal (1) malignant blood neoplasm (l(1)mbn). We show that the mxc product is dramatically needed in most tissues because its loss leads to cell death after a few divisions. mxc has also a strong maternal effect. We find that hypomorphic mxc mutations enhance other PcG gene mutant phenotypes and cause ectopic expression of homeotic genes, confirming that PcG products are cooperatively involved in repression of selector genes outside their normal expression domains. We also demonstrate that the mxc product is needed for imaginal head specification, through regulation of the ANT-C gene Deformed. Our analysis reveals that mxc is involved in the maternal control of early zygotic gap gene expression previously reported for some PcG genes and suggests that the mechanism of this early PcG function could be different from the PcG-mediated regulation of homeotic selector genes later in development. We discuss these data in view of the numerous functions of PcG genes during development.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1369-1376 ◽  
Author(s):  
Myriam Zecca ◽  
Gary Struhl

The subdivision of the Drosophila wing imaginal disc into dorsoventral (DV) compartments and limb-body wall (wing-notum) primordia depends on Epidermal Growth Factor Receptor (EGFR) signaling, which heritably activates apterous (ap) in D compartment cells and maintains Iroquois Complex (Iro-C) gene expression in prospective notum cells. We examine the source, identity and mode of action of the EGFR ligand(s) that specify these subdivisions. Of the three known ligands for the Drosophila EGFR, only Vein (Vn), but not Spitz or Gurken, is required for wing disc development. We show that Vn activity is required specifically in the dorsoproximal region of the wing disc for ap and Iro-C gene expression. However, ectopic expression of Vn in other locations does not reorganize ap or Iro-C gene expression. Hence, Vn appears to play a permissive rather than an instructive role in organizing the DV and wing-notum segregations, implying the existance of other localized factors that control where Vn-EGFR signaling is effective. After ap is heritably activated, the level of EGFR activity declines in D compartment cells as they proliferate and move ventrally, away from the source of the instructive ligand. We present evidence that this reduction is necessary for D and V compartment cells to interact along the compartment boundary to induce signals, like Wingless (Wg), which organize the subsequent growth and differentiation of the wing primordium.


1995 ◽  
Vol 310 (3) ◽  
pp. 757-763 ◽  
Author(s):  
A Magyar ◽  
E Bakos ◽  
A Váradi

A 14 kb genomic clone covering the organellar-type Ca(2+)-ATPase gene of Drosophila melanogaster has been isolated and characterized. The sequence of a 7132 bp region extending from 1.1 kb 5′ upstream of the initiation ATG codon over the polyadenylation signal at the 3′ end has been determined. The gene consists of nine exons including one with an exceptional size of 2172 bp representing 72% of the protein coding region. Introns are relatively small (< 100 bp) except for the 3′ intron which has a size of 2239 bp, an exceptionally large size among Drosophila introns. Five of the introns are in the same positions in Drosophila, Artemia and rabbit SERCA1 Ca(2+)-ATPase genes. There is only one organellar-type Ca(2+)-ATPase gene in the Drosophila genome, as was shown by Southern-blot analysis [Váradi, Gilmore-Hebert and Benz (1989) FEBS Lett. 258, 203-207] and by chromosomal localization [Magyar and Váradi (1990) Biochem. Biophys. Res. Commun. 173, 872-877]. Primer extension and S1-nuclease assays revealed a potential transcription initiation site 876 bp upstream of the translation initiation ATG with a TATA-box 23 bp upstream of this site. Analysis of the 5′ region of the Drosophila organellar-type Ca(2+)-ATPase gene suggests the presence of potential recognition sequences of various muscle-specific transcription factors and shows a region with remarkable similarity to that in the rabbit SERCA2 gene. The tissue distribution of expression of the organellar-type Ca(2+)-ATPase gene has been studied by in situ RNA-RNA hybridization on microscopic sections. A low mRNA abundance can be detected in each tissue of adult flies, suggesting a housekeeping function for the gene. On the other hand a pronounced tissue specificity of expression has also been found as the organellar-type Ca(2+)-ATPase is expressed at a very high level in cell bodies of the central nervous system and in various muscles.


Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1645-1655 ◽  
Author(s):  
Giselbert Hauptmann ◽  
Heinz-Georg Belting ◽  
Uta Wolke ◽  
Karen Lunde ◽  
Iris Söll ◽  
...  

Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.


2009 ◽  
Vol 329 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Nicole C. Grieder ◽  
Gines Morata ◽  
Markus Affolter ◽  
Walter J. Gehring

Sign in / Sign up

Export Citation Format

Share Document