spiel ohne grenzen/pou2is required for zebrafish hindbrain segmentation

Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1645-1655 ◽  
Author(s):  
Giselbert Hauptmann ◽  
Heinz-Georg Belting ◽  
Uta Wolke ◽  
Karen Lunde ◽  
Iris Söll ◽  
...  

Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.

2019 ◽  
Vol 99 (2) ◽  
pp. 214-222
Author(s):  
F.F. Mohamed ◽  
C. Ge ◽  
A. Binrayes ◽  
R.T. Franceschi

Collagen signaling is critical for proper bone and tooth formation. Discoidin domain receptor 2 (DDR2) is a collagen-activated tyrosine kinase receptor shown to be essential for skeletal development. Patients with loss of function mutations in DDR2 develop spondylo-meta-epiphyseal dysplasia (SMED), a rare, autosomal recessive disorder characterized by short stature, short limbs, and craniofacial anomalies. A similar phenotype was observed in Ddr2-deficient mice, which exhibit dwarfism and defective bone formation in the axial, appendicular, and cranial skeletons. However, it is not known if Ddr2 has a role in tooth formation. We first defined the expression pattern of Ddr2 during tooth formation using Ddr2-LacZ knock-in mice. Ddr2 expression was detected in the dental follicle/sac and dental papilla mesenchyme of developing teeth and in odontoblasts and the periodontal ligament (PDL) of adults. No LacZ staining was detected in wild-type littermates. This Ddr2 expression pattern suggests a potential role in the tooth and surrounding periodontium. To uncover the function of Ddr2, we used Ddr2 slie/slie mice, which contain a spontaneous 150-kb deletion in the Ddr2 locus to produce an effective null. In comparison with wild-type littermates, Ddr2 slie/slie mice displayed disproportional tooth size (decreased root/crown ratio), delayed tooth root development, widened PDL space, and interradicular alveolar bone defects. Ddr2 slie/slie mice also had abnormal collagen content associated with upregulation of periostin levels within the PDL. The delayed root formation and periodontal abnormalities may be related to defects in RUNX2-dependent differentiation of odontoblasts and osteoblasts; RUNX2-S319-P was reduced in PDLs from Ddr2 slie/slie mice, and deletion of Ddr2 in primary cell cultures from dental pulp and PDL inhibited differentiation of cells to odontoblasts or osteoblasts, respectively. Together, our studies demonstrate odontoblast- and PDL-specific expression of Ddr2 in mature and immature teeth, as well as indicate that DDR2 signaling is important for normal tooth formation and maintenance of the surrounding periodontium.


Genome ◽  
1998 ◽  
Vol 41 (3) ◽  
pp. 381-390 ◽  
Author(s):  
A J Simmonds ◽  
J B Bell

The invected gene of Drosophila melanogaster is a homeobox-containing gene that is closely related to engrailed. A dominant gain of function allele, invectedDominant, was derived from mutagenesis of a dominant allele of vestigial, In(2R)vgW. A careful analysis of the phenotype of invectedDominant shows that it is associated with a transformation of the anterior compartment of the wing to a posterior fate. This transformation is normally limited to the wing blade itself and does not involve the remaining tissues derived from the wing imaginal disc, including the wing hinge and dorsal thorax of the fly. The ectopic expression of invected protein associated with invectedDominant correlates spatially with the normal expression pattern of vestigial in the wing imaginal disc, suggesting that control elements of vestigial are driving ectopic invected expression. This was confirmed by sequence analysis that shows that the dominant vestigial activity was eliminated by a deletion that removes the 3' portion of the vestigial coding region. This leaves a gene fusion wherein the vestigial enhancer elements are still juxtaposed immediately 5' to the invected transcriptional start site, but with the vg sequences harboring an additional lesion. Unlike recessive invected alleles, the invectedDominant allele produces an observable phenotype, and as such, should prove useful in determining the role of invected in patterning the wing imaginal disc. Genetic analysis has shown that mutations of polyhomeotic, a gene involved in regulating engrailed expression, cause a reproducible alteration in the invectedDominant phenotype. Finally, the invectedDominant allele should prove valuable for identifying and characterizing genes that are activated within the posterior compartment. A screen using various lacZ lines that are asymmetrically expressed in an anterior-posterior manner in the wing imaginal disc isolated one line that shows posterior-specific expression within the transformed anterior compartment.Key words: Drosophila, development, dominant mutation, ectopic, wings.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Katherine W Rogers ◽  
Nathan D Lord ◽  
James A Gagnon ◽  
Andrea Pauli ◽  
Steven Zimmerman ◽  
...  

Developmental signaling pathways often activate their own inhibitors. Such inhibitory feedback has been suggested to restrict the spatial and temporal extent of signaling or mitigate signaling fluctuations, but these models are difficult to rigorously test. Here, we determine whether the ability of the mesendoderm inducer Nodal to activate its inhibitor Lefty is required for development. We find that zebrafish lefty mutants exhibit excess Nodal signaling and increased specification of mesendoderm, resulting in embryonic lethality. Strikingly, development can be fully restored without feedback: Lethal patterning defects in lefty mutants can be rescued by ectopic expression of lefty far from its normal expression domain or by spatially and temporally uniform exposure to a Nodal inhibitor drug. While drug-treated mutants are less tolerant of mild perturbations to Nodal signaling levels than wild type embryos, they can develop into healthy adults. These results indicate that patterning without inhibitory feedback is functional but fragile.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 131-142
Author(s):  
Laura A Johnston ◽  
Bruce D Ostrow ◽  
Christine Jasoni ◽  
Karen Blochlinger

Abstract The cut locus (ct) codes for a homeodomain protein (Cut) and controls the identity of a subset of cells in the peripheral nervous system in Drosophila. During a screen to identify ct-interacting genes, we observed that flies containing a hypomorphic ct mutation and a heterozygous deletion of the Antennapedia complex exhibit a transformation of mouthparts into leg and antennal structures similar to that seen in homozygous proboscipedia (pb) mutants. The same phenotype is produced with all heterozygous pb alleles tested and is fully penetrant in two different ct mutant backgrounds. We show that this phenotype is accompanied by pronounced changes in the expression patterns of both ct and pb in labial discs. Furthermore, a significant proportion of ct mutant flies that are heterozygous for certain Antennapedia (Antp) alleles have thoracic defects that mimic loss-of-function Antp phenotypes, and ectopic expression of Cut in antennal discs results in ectopic Antp expression and a dominant Antp-like phenotype. Our results implicate ct in the regulation of expression and/or function of two homeotic genes and document a new role of ct in the control of segmental identity.


Development ◽  
1994 ◽  
Vol 120 (8) ◽  
pp. 2297-2304 ◽  
Author(s):  
M. Freeman

I have examined the effects on cells in the developing eye of over-expressing the argos gene. Transgenic flies carrying argos expressed under hsp70 and sevenless control sequences were analysed. All cell types in the developing eye (except bristles) are sensitive to argos concentration: over-expression leads to too few cells forming, the opposite phenotype to that seen in argos loss-of-function mutants. This effect was only seen with HS-argos flies: sev-argos flies, which over-express the protein at a lower level are not affected, suggesting that a considerable over-expression is required to disrupt cell fate. However, sev-argos is able to rescue argos eye mutations completely, indicating that the normal expression pattern is not critical for wild-type eye development. By transfecting argos into tissue culture cells, I show that the protein is secreted in a soluble form.


Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 1015-1018 ◽  
Author(s):  
T.W. Cline

Bhattacharya et al. (Bhattacharya, A., Sudha, S., Chandra, H. S. and Steward, R. (1999) Development 126, 5485–5493) reported that loss-of-function mutations in the flex (female-specific lethal on X) gene caused female-specific lethality because flex(+) acts as a positive regulator of the master switch gene Sex lethal (Sxl). Sxl is essential for female development. Key to their conclusion was the ability of flex mutations to suppress the male lethality caused by Sxl(M) mutations, which inappropriately activate Sxl female-specific expression. Here we report our contrary findings that flex mutations fail to suppress even the weakest Sxl(M)alleles, arguing against the proposed regulatory relationship between flex and Sxl. Instead we show that the lethal flex phenotype depends on the absence of a Y chromosome, not on the presence of two X chromosomes. flex lethality is caused by a defect in the functioning of the X-linked rDNA locus called bobbed, since this defect is complemented by the corresponding wild-type rDNA complex on the Y.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 533-533
Author(s):  
Fabienne R.S. Adriaanse ◽  
Sadie M. Sakurada ◽  
Shondra M. Pruett-Miller ◽  
Ronald W. Stam ◽  
Michel C Zwaan ◽  
...  

The homeobox (HOX) genes are a highly conserved family of transcription factors involved in embryonic patterning as well as adult hematopoiesis. Dysregulation of HOX genes, in particular upregulation of HOXA cluster genes, is a frequent event in Acute Myelogenous Leukemia (AML). Recently, we performed a detailed genomic analysis on pediatric non-Down Syndrome Acute Megakaryoblastic Leukemia (non-DS-AMKL) and identified novel fusions involving a HOX cluster gene in 14.9% of the cases. While most fusions were predicted to lead to an in-frame functional protein, several fusions included a non-coding HOX antisense gene (PLEK-HOXA11-AS, C8orf76-HOXA11-AS, HOXA10-AS-CD164) that were predicted to result in a loss of function of these regulatory transcripts. The functional consequence of these events, however, remain unknown. HOXA11-AS (human) and Hoxa11os (mouse) have been previously shown to have mutually exclusive expression with the Hoxa11 transcript throughout development. We therefore hypothesized that loss of function of non-coding HOX antisense genes as a result of these structural variations would cause upregulation of nearby coding HOXA genes that in turn promote leukemogenesis. To test this hypothesis, using CRISPR-Cas9 technology, we genome edited the human AMKL cell line CMK to carry the PLEK-HOXA11-AS translocation. qRT-PCR of HOXA11-AS and HOXA9-11 transcripts in this cell line recapitulated the pattern seen in patient specimens. Specifically, HOXA11-AS expression was significantly diminished while HOXA10 and HOXA11 transcripts were upregulated 1.8-2.5-fold when compared to parental CMK cells (p=0.0385 and p=0.006 respectively). To further investigate the loss of HOXA11-ASin vivo a CRISPR-Cas9 Hoxa11os knockout mouse model was established. qRT-PCR on bone marrow confirmed the loss of Hoxa11os transcripts in heterozygous (Hoxa11os1+/-) and homozygous (Hoxa11os-/-) mice of both genders (p=<0.0001-0.0012). Consistent with Hoxa11os knockdown, Hoxa11 transcripts were upregulated in male (1.8-fold p=0.0023 Hoxa11os+/-, and 2-fold p=0.0052 Hoxa11os-/-)and female (1.3-fold p=0.0074 Hoxa11os+/- and 2.2-fold p=0.0226 Hoxa11os-/-) bone marrow compared to wild type gender matched littermates. Interestingly, flow cytometry analysis of progenitor subsets revealed gender specific findings. We found a significant increase in the frequency of the lineage negative, Sca-1 and c-Kit positive (LSK) population in males (0.13% of total bone marrow Hoxa11os+/+, 0.19% p=0.0214 Hoxa11os+/-, and 0.25% p=0.0001 Hoxa11os-/-) compared to wild type male littermates but not in female mice at 8 weeks of age. In contrast an increase in the megakaryocyte-erythroid (MEP) population was seen only in the female setting (0.07% Hoxa11os+/+, 0.15% p=0.0055 Hoxa11os+/-, and 0.165% p<0.0001 Hoxa11os-/-). Limiting dilution colony forming assay confirmed the higher LSK frequency with a 2-fold increase in the number of colonies for male knockout marrow compared to wild type marrow in contrast to the female setting where no significant differences were seen. As hormonal signals have been shown to regulate expression of HOX genes and differences in clonogenicity of male and female stem cells has been previously demonstrated, we reasoned this phenomenon could be secondary to extrinsic stimuli in vivo. The relatively uniform Hoxa11 levels in male and female knockout mice, however, suggested that cell intrinsic factors may also play a role. We therefore overexpressed HOXA11 into male and female wild type bone marrow ex vivo for colony forming assays to determine if elevated levels of the HOXA11 protein led to functional differences. This assay demonstrated a clear enhancement of self-renewal in male but not female bone marrow in contrast to HOXA9 overexpression which serially replated in both genders. Combined these data demonstrate that loss of function alterations in Hoxa11os transcripts lead to upregulation of Hoxa11 and gender specific hematopoietic progenitor cell perturbations. Ongoing efforts include competitive transplant studies as well as RNA and ChIP sequencing to identify gender specific downstream targets of Hoxa11 in the hematopoietic compartment in order to understand the selective expansion of progenitor subsets and male specific self-renewal capacity of this protein. These data will contribute to our understanding on how HOXA11-AS translocations promote oncogenesis. Disclosures Zwaan: Daiichi Sankyo: Consultancy; Sanofi: Consultancy; Roche: Consultancy; Pfizer: Research Funding; BMS: Research Funding; Incyte: Consultancy; Celgene: Consultancy, Research Funding; Servier: Consultancy; Jazz Pharmaceuticals: Other: Travel support; Janssen: Consultancy. Gruber:Bristol-Myers Squibb: Consultancy.


Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5083-5092 ◽  
Author(s):  
M. Yamada ◽  
T. Murata ◽  
S. Hirose ◽  
G. Lavorgna ◽  
E. Suzuki ◽  
...  

FTZ-F1, a member of the nuclear receptor superfamily, has been implicated in the activation of the segmentation gene fushi tarazu during early embryogenesis of Drosophila melanogaster. We found that an isoform of FTZ-F1, betaFTZ-F1, is expressed in the nuclei of almost all tissues slightly before the first and second larval ecdysis and before pupation. Severely affected ftz-f1 mutants display an embryonic lethal phenotype, but can be rescued by ectopic expression of betaFTZ-F1 during the period of endogenous betaFTZ-F1 expression in the wild type. The resulting larvae are not able to molt, but this activity is rescued again by forced expression of betaFTZ-F1, allowing progression to the next larval instar stage. On the other hand, premature expression of betaFTZ-F1 in wild-type larvae at mid-first instar or mid-second instar stages causes defects in the molting process. Sensitive periods were found to be around the time of peak ecdysteroid levels and slightly before the start of endogenous betaFTZ-F1 expression. A hypomorphic ftz-f1 mutant that arrests in the prepupal stage can also be rescued by ectopic, time-specific expression of betaFTZ-F1. Failure of salivary gland histolysis, one of the phenotypes of the ftz-f1 mutant, is rescued by forced expression of the ftz-f1 downstream gene BR-C during the late prepupal period. These results suggest that betaFTZ-F1 regulates genes associated with ecdysis and metamorphosis, and that the exact timing of its action in the ecdysone-induced gene cascade is important for proper development.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Donna Brennan ◽  
Ying Hu ◽  
Walid Medhat ◽  
Alicia Dowling ◽  
Mỹ G. Mahoney

Cell-cell adhesion mediated by desmosomes is crucial for maintaining proper epidermal structure and function, as evidenced by several severe and potentially fatal skin disorders involving impairment of desmosomal proteins. Pemphigus foliaceus (PF) and staphylococcal scalded skin syndrome (SSSS) are subcorneal blistering diseases resulting from loss of function of the desmosomal cadherin, desmoglein 1 (Dsg1). To further study the pathomechanism of these diseases and to assess the adhesive properties of Dsg2, we employed a recently established transgenic (Tg) mouse model expressing Dsg2 in the superficial epidermis. Neonatal Tg and wild type (WT) mice were injected with purified ETA or PF Ig. We showed that ectopic expression of Dsg2 reduced the extent of blister formation in response to both ETA and PF Ig. In response to PF Ig, we observed either a dramatic loss or a reorganization of Dsg1-α, Dsg1-β, and, to a lesser extent, Dsg1-γ, in WT mice. The Inv-Dsg2 Tg mice showed enhanced retention of Dsg1 at the cell-cell border. Collectively, our data support the role for Dsg2 in cell adhesion and suggest that ectopic superficial expression of Dsg2 can increase membrane preservation of Dsg1 and limit epidermal blister formation mediated by PF antibodies and exfoliative toxins.


Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1403-1412 ◽  
Author(s):  
Eugenia Villa-Cuesta ◽  
Joaquín de Navascués ◽  
Mar Ruiz-Gómez ◽  
Ruth Diez del Corral ◽  
María Domínguez ◽  
...  

Abstract The Tufted1 (Tft1) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft1 corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which results in supernumerary neurons of the PNS, and in the notum region of the third instar imaginal wing, which gives rise to the mesothoracic extra bristles. Revertants of Tft1, which lack ectopic neurons and bristles, do not show ectopic expression of amos. One revertant is a loss-of-function allele of amos and has a recessive phenotype in the embryonic PNS. Our results suggest that both normal and ectopic Tft1 bristles are generated following similar rules, and both are subjected to Notch-mediated lateral inhibition. The ability of Tft1 bristles to appear close together may be due to amos having a stronger proneural capacity than that of other proneural genes like asense and scute. This ability might be related to the wild-type function of amos in promoting development of large clusters of closely spaced olfactory sensilla.


Sign in / Sign up

Export Citation Format

Share Document