Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana)

Genome ◽  
2013 ◽  
Vol 56 (10) ◽  
pp. 577-585 ◽  
Author(s):  
Catherine I. Cullingham ◽  
Janice E.K. Cooke ◽  
David W. Coltman

Forest trees exhibit a remarkable range of adaptations to their environment, but as a result of frequent and long-distance gene flow, populations are often only weakly differentiated. Lodgepole and jack pine hybridize in western Canada, which adds the opportunity for introgression through hybridization to contribute to population structure and (or) adaptive variation. Access to large sample size, high density SNP datasets for these species would improve our ability to resolve population structure, parameterize introgression, and separate the influence of demography from adaptation. To accomplish this, 454 transcriptome reads for lodgepole and jack pine were assembled using Newbler and MIRA, the assemblies mined for SNPs, and 1536 SNPs were selected for typing on lodgepole pine, jack pine, and their hybrids (N = 536). We identified population structure using both Bayesian clustering and discriminate analysis of principle components. Introgressed SNP loci were identified and their influence on observed population structure was assessed. We found that introgressed loci resulted in increased differentiation both within lodgepole and jack pine populations. These findings are timely given the recent mountain pine beetle population expansion in the hybrid zone, and will facilitate future studies of adaptive traits in these ecologically important species.

2019 ◽  
Vol 151 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Asha Wijerathna ◽  
Caroline Whitehouse ◽  
Heather Proctor ◽  
Maya Evenden

AbstractMountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), adults fly to disperse before host colonisation. The effect of flight on reproduction was tested by comparing the number and quality of offspring from beetles flown on flight mills to that of unflown control beetles. Beetles reproduced in bolts of their native host, lodgepole pine (Pinus contorta var. latifolia Engelmann (Pinaceae)), or a novel host, jack pine (Pinus banksiana Lambert (Pinaceae)). Bolts infested by control beetles produced more offspring overall than bolts with flown beetles. The effect of pine species on the number of offspring produced per bolt varied by individual tree. Flown adults produced fewer offspring compared to control parents in all bolts in jack pine regardless of the tree, but tree-level variation was visible in lodgepole pine. An interaction between flight treatment and tree host affected beetle body condition. More offspring emerged from jack pine, but higher quality offspring emerged from lodgepole pine. The offspring sex ratio was female-biased regardless of parental flight treatment. This study reveals trade-offs between flight and reproduction in mountain pine beetle as measured at the level of the bolt.


2019 ◽  
Vol 49 (7) ◽  
pp. 844-853 ◽  
Author(s):  
Ian Burns ◽  
Patrick M.A. James ◽  
David W. Coltman ◽  
Catherine I. Cullingham

In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb.) form a mosaic hybrid zone, the spatial extent of which remains poorly defined. We sought to refine the genetic and geographic distribution of this hybrid zone in western North America to provide information important in predicting future risk of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks. We used 29 single nucleotide polymorphism (SNP) markers to discriminate lodgepole pine, jack pine, and their hybrids. We compared and contrasted spatial patterns of hybridization in northern and southern forest zones based on the colonization history of the two species. We found that patterns of introgression were more similar between the zones than expected by chance, but there were significant differences between these regions at specific loci. Using logistic regression, we created a robust predictive model to distinguish among lodgepole pine, jack pine, and their hybrids using a combination of geographic and environmental predictors. Using model selection based on Akaike information criterion, we found that location, elevation, and moisture are important predictors for species class. Quantification of the genetic differences between these two regions, combined with an accurate model for predicting the spatial distribution of lodgepole pine, jack pine, and their hybrids, provides essential information for continued effective management of forest resources.


Genome ◽  
2002 ◽  
Vol 45 (3) ◽  
pp. 530-540 ◽  
Author(s):  
Terrance Z Ye ◽  
Rong-Cai Yang ◽  
Francis C Yeh

We studied the population structure of a lodgepole (Pinus contorta Dougl.) and jack pine (Pinus banksiana Lamb.) complex in west central Alberta and neighboring areas by assessing random amplified polymorphic DNA (RAPD) variability in 23 lodgepole pine, 9 jack pine, and 8 putative hybrid populations. Of 200 random primers screened, 10 that amplified 39 sharp and reproducible RAPDs were chosen for the study. None of the 39 RAPDs were unique to the parental species. RAPD diversity ranged from 0.085 to 0.190 among populations and averaged 0.143 for lodgepole pine, 0.156 for jack pine, 0.152 for hybrids, and 0.148 for all 40 populations. The estimated population differentiation based on GST was 0.168 for hybrids, 0.162 for lodgepole pine, 0.155 for jack pine, and 0.247 across all 40 populations. Cluster analysis of genetic distances generally separated jack pine from lodgepole pine and hybrids, but no division could be identified that further separated lodgepole pine from hybrids. The observed weak to mild trend of "introgression by distance" in the complex and neighbouring areas was consistent with the view that introgressive hybridization between lodgepole and jack pines within and outside the hybrid zone may have been through secondary contact and primary intergradation, respectively.Key words: introgression, lodgepole–jack pine complex, natural hybridization, random amplified polymorphic DNA.


1991 ◽  
Vol 69 (3) ◽  
pp. 547-551 ◽  
Author(s):  
Chang Yi Xie ◽  
Peggy Knowles

Spatial autocorrelation analysis was used to investigate the geographic distribution of allozyme genotypes within three natural populations of jack pine (Pinus banksiana Lamb.). Results indicate that genetic substructuring within these populations is very weak and the extent differs among populations. These results are in good agreement with those inferred from mating-system studies. Factors such as the species' predominantly outbreeding system, high mortality of selfs and inbreds prior to reproduction, long-distance pollen dispersal, and the absence of strong microhabitat selection may be responsible for the observed weak genetic substructuring. Key words: jack pine, Pinus banksiana, genetic substructure, allozyme, spatial autocorrelation analysis.


2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


2004 ◽  
Vol 118 (4) ◽  
pp. 595 ◽  
Author(s):  
Brock Epp ◽  
Jacques C. Tardif

The Lodgepole Pine Dwarf Mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is an important pathogen of Jack Pine (Pinus banksiana Lamb.). Dwarf Mistletoe alters tree form, suppresses growth, and reduces volume and overall wood quality of its host. Stem analysis and a 3-parameter logistic regression model were used to compare the growth of heavily and lightly to non infected Jack Pine trees. At the time of sampling, no significant reduction in diameter at breast height and basal area were observed in heavily infected trees. However, a significant reduction in height and volume and an increase in taper were observed in heavily infected trees. Growth models predicted a 21.1% lower basal area, 23.4% lower height and 42.1% lower volume by age 60 for the high infection group.


2017 ◽  
Vol 26 (6) ◽  
pp. 478 ◽  
Author(s):  
Maria Sharpe ◽  
Hyejin Hwang ◽  
David Schroeder ◽  
Soung Ryoul Ryu ◽  
Victor J. Lieffers

This study documents cone opening and natural regeneration of jack pine (Pinus banksiana Lamb.) after burning live and dead stands similar to those killed by the mountain pine beetle (Dendroctonus ponderosae). Trees were killed by girdling in May and were burned in late July, 26 months later. Pairs of live and dead plots were simultaneously burned using three types of fire: surface, intermittent crown and continuous crown fires. Each type of fire was replicated three times; the nine pairs of burns were completed in a 4-day period. After fire, more cones were opened on dead trees than live trees. On dead trees, there was cone opening even when fire charred only the lower part of the bole. Three years after burning, dead stands with continuous crown fires had some of the densest regeneration and the highest rates of stocking. Across all burns in this study, seedling regeneration was best in shallow residual duff and in the more intensely burned plots. Without burning, there was virtually no regeneration 5 years after mortality. The results also show that burning, especially under continuous crown fire, could be used to promote regeneration in dead stands.


1992 ◽  
Vol 70 (3) ◽  
pp. 505-510 ◽  
Author(s):  
M. I. Bellocq ◽  
J. F. Bendell ◽  
B. L. Cadogan

A simulated operational spray with Bacillus thuringiensis in a jack pine (Pinus banksiana) plantation near Gogama, Ontario, showed effects of the insecticide on the population structure, diet, and prey selection of the masked shrew, Sorex cinereus. During the pretreatment period, the abundance and population structure of S. cinereus were similar in the control and experimental areas. Although the total abundance of shrews was also similar after spraying, there were fewer adult males and more juveniles in the treated area than in the control. The emigration of adult males was apparently increased after spraying. Lepidopteran larvae and Araneae were the most abundant items in the diet. After spraying, more lepidopteran larvae were eaten on the control than on the treated area. Juveniles and adult females but not adult males shifted from lepidoptran larvae to alternative prey in the treated area. Generalist insectivores such as S. cinereus are more likely to control the abundance of arthropods and less likely to be impacted negatively by selective insecticides such as B. thuringiensis.


Botany ◽  
2016 ◽  
Vol 94 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Rongzhou Man ◽  
Steve Colombo ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Compared with the effects of spring frosts on opening buds or newly flushed tissues, winter freezing damage to conifers, owing to temperature fluctuations prior to budbreak, is rare and less known. In this study, changes in cold hardiness (measured based on electrolyte leakage and needle damage) and spring budbreak were assessed to examine the responses of four boreal conifer species — black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca) (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) — to different durations of experimental warming (16 °C day to –2 °C night with a 10 h photoperiod, except for night temperatures during November warming (+2 °C)). Seedlings showed increased responses to warming from November to March, while the capacity to regain the cold hardiness lost to warming decreased during the same period. This suggests an increasing vulnerability of conifers to temperature fluctuations and freezing damage with the progress of chilling and dormancy release from fall to spring. Both lodgepole pine and jack pine initiated spring growth earlier and had greater responses to experimental warming in bud phenology than black spruce and white spruce, suggesting a greater potential risk of frost/freezing damage to pine trees in the spring.


Sign in / Sign up

Export Citation Format

Share Document