Principles, Techniques, and Limitations of Near Infrared Spectroscopy

2004 ◽  
Vol 29 (4) ◽  
pp. 463-487 ◽  
Author(s):  
Marco Ferrari ◽  
Leonardo Mottola ◽  
Valentina Quaresima

In the last decade the study of the human brain and muscle energetics underwent a radical change, thanks to the progressive introduction of noninvasive techniques, including near-infrared (NIR) spectroscopy (NIRS). This review summarizes the most recent literature about the principles, techniques, advantages, limitations, and applications of NIRS in exercise physiology and neuroscience. The main NIRS instrumentations and measurable parameters will be reported. NIR light (700-1000 nm) penetrates superficial layers (skin, subcutaneous fat, skull, etc.) and is either absorbed by chromophores (oxy- and deoxyhemoglobin and myoglobin) or scattered within the tissue. NIRS is a noninvasive and relatively low-cost optical technique that is becoming a widely used instrument for measuring tissue O2 saturation, changes in hemoglobin volume and, indirectly, brain/muscle blood flow and muscle O2 consumption. Tissue O2 saturation represents a dynamic balance between O2 supply and O2 consumption in the small vessels such as the capillary, arteriolar, and venular bed. The possibility of measuring the cortical activation in response to different stimuli, and the changes in the cortical cytochrome oxidase redox state upon O2 delivery changes, will also be mentioned. Key words: tissue oximetry, oxidative metabolism, optical imaging, blood flow, oxygen consumption, exercise physiology


2006 ◽  
Vol 100 (4) ◽  
pp. 1426-1427 ◽  
Author(s):  
Marco Ferrari ◽  
Valentina Cettolo ◽  
Valentina Quaresima

Near-infrared (NIR) spectroscopy is a noninvasive optical technique that is increasingly used to assess muscle oxygenation during exercise with the assumption that the contribution of skin blood flow to the NIR signal is minor or nonexistent. We tested this assumption in humans by monitoring forearm tissue oxygenation during selective cutaneous vasodilation induced by locally applied heat ( n = 6) or indirect whole body heating (i.e., heating subject but not area surrounding NIR probes; n = 8). Neither perturbation has been shown to cause a measurable change in muscle blood flow or metabolism. Local heating (∼41°C) caused large increases in the NIR-derived tissue oxygenation signal [before heating = 0.82 ± 0.89 optical density (OD), after heating = 18.21 ± 2.44 OD; P < 0.001]. Similarly, whole body heating (increase internal temperature 0.9°C) also caused large increases in the tissue oxygenation signal (before heating = −0.31 ± 1.47 OD, after heating = 12.48 ± 1.82 OD; P < 0.001). These increases in the tissue oxygenation signal were closely correlated with increases in skin blood flow during both local heating (mean r = 0.95 ± 0.02) and whole body heating (mean r = 0.89 ± 0.04). These data suggest that the contribution of skin blood flow to NIR measurements of tissue oxygenation can be significant, potentially confounding interpretation of the NIR-derived signal during conditions where both skin and muscle blood flows are elevated concomitantly (e.g., high-intensity and/or prolonged exercise).



2006 ◽  
Vol 100 (1) ◽  
pp. 221-224 ◽  
Author(s):  
Scott L. Davis ◽  
Paul J. Fadel ◽  
Jian Cui ◽  
Gail D. Thomas ◽  
Craig G. Crandall

Near-infrared (NIR) spectroscopy is a noninvasive optical technique that is increasingly used to assess muscle oxygenation during exercise with the assumption that the contribution of skin blood flow to the NIR signal is minor or nonexistent. We tested this assumption in humans by monitoring forearm tissue oxygenation during selective cutaneous vasodilation induced by locally applied heat ( n = 6) or indirect whole body heating (i.e., heating subject but not area surrounding NIR probes; n = 8). Neither perturbation has been shown to cause a measurable change in muscle blood flow or metabolism. Local heating (∼41°C) caused large increases in the NIR-derived tissue oxygenation signal [before heating = 0.82 ± 0.89 optical density (OD), after heating = 18.21 ± 2.44 OD; P < 0.001]. Similarly, whole body heating (increase internal temperature 0.9°C) also caused large increases in the tissue oxygenation signal (before heating = −0.31 ± 1.47 OD, after heating = 12.48 ± 1.82 OD; P < 0.001). These increases in the tissue oxygenation signal were closely correlated with increases in skin blood flow during both local heating (mean r = 0.95 ± 0.02) and whole body heating (mean r = 0.89 ± 0.04). These data suggest that the contribution of skin blood flow to NIR measurements of tissue oxygenation can be significant, potentially confounding interpretation of the NIR-derived signal during conditions where both skin and muscle blood flows are elevated concomitantly (e.g., high-intensity and/or prolonged exercise).



2008 ◽  
Vol 104 (4) ◽  
pp. 1202-1210 ◽  
Author(s):  
Jordan A. Guenette ◽  
Ioannis Vogiatzis ◽  
Spyros Zakynthinos ◽  
Dimitrios Athanasopoulos ◽  
Maria Koskolou ◽  
...  

Measurement of respiratory muscle blood flow (RMBF) in humans has important implications for understanding patterns of blood flow distribution during exercise in healthy individuals and those with chronic disease. Previous studies examining RMBF in humans have required invasive methods on anesthetized subjects. To assess RMBF in awake subjects, we applied an indicator-dilution method using near-infrared spectroscopy (NIRS) and the light-absorbing tracer indocyanine green dye (ICG). NIRS optodes were placed on the left seventh intercostal space at the apposition of the costal diaphragm and on an inactive control muscle (vastus lateralis). The primary respiratory muscles within view of the NIRS optodes include the internal and external intercostals. Intravenous bolus injection of ICG allowed for cardiac output (by the conventional dye-dilution method with arterial sampling), RMBF, and vastus lateralis blood flow to be quantified simultaneously. Esophageal and gastric pressures were also measured to calculate the work of breathing and transdiaphragmatic pressure. Measurements were obtained in five conscious humans during both resting breathing and three separate 5-min bouts of constant isocapnic hyperpnea at 27.1 ± 3.2, 56.0 ± 6.1, and 75.9 ± 5.7% of maximum minute ventilation as determined on a previous maximal exercise test. RMBF progressively increased (9.9 ± 0.6, 14.8 ± 2.7, 29.9 ± 5.8, and 50.1 ± 12.5 ml·100 ml−1·min−1, respectively) with increasing levels of ventilation while blood flow to the inactive control muscle remained constant (10.4 ± 1.4, 8.7 ± 0.7, 12.9 ± 1.7, and 12.2 ± 1.8 ml·100 ml−1·min−1, respectively). As ventilation rose, RMBF was closely and significantly correlated with 1) cardiac output ( r = 0.994, P = 0.006), 2) the work of breathing ( r = 0.995, P = 0.005), and 3) transdiaphragmatic pressure ( r = 0.998, P = 0.002). These data suggest that the NIRS-ICG technique provides a feasible and sensitive index of RMBF at different levels of ventilation in humans.



Author(s):  
Miles F. Bartlett ◽  
Scott M. Jordan ◽  
Dennis M. Hueber ◽  
Michael D. Nelson

Near-infrared diffuse correlation spectroscopy (DCS) is increasingly utilized to study relative changes in skeletal muscle blood flow. However, most diffuse correlation spectrometers assume that tissue optical properties- such as absorption (μa) and reduced scattering (μ's) coefficients- remain constant during physiological provocations, which is untrue for skeletal muscle. Here, we interrogate how changes in tissue μa and μ's affect DCS calculations of blood flow index (BFI). We recalculated BFI using raw autocorrelation curves and μa/μ's values recorded during a reactive hyperemia protocol in 16 healthy young individuals. First, we show that incorrectly assuming baseline μa and μ's substantially affects peak BFI and BFI slope when expressed in absolute terms (cm2/s, p<0.01) but these differences are abolished when expressed in relative terms (% baseline). Next, to evaluate the impact of physiologic changes in μa and μ's, we compared peak BFI and BFI slope when μa and μ's were held constant throughout the reactive hyperemia protocol versus integrated from a 3s-rolling average. Regardless of approach, group means for peak BFI and BFI slope did not differ. Group means for peak BFI and BFI slope were also similar following ad absurdum analyses, where we simulated supraphysiologic changes in μa/μ's. In both cases, however, we identified individual cases where peak BFI and BFI slope were indeed affected, with this result being driven by relative changes in μa over μ's. Overall, these results provide support for past reports in which μa/μ's were held constant but also advocate for real-time incorporation of μa and μ's moving forward.



2018 ◽  
Vol 26 (5) ◽  
pp. 471-480 ◽  
Author(s):  
Jonathan R Murrow ◽  
Jared T Brizendine ◽  
Bill Djire ◽  
Hui-Ju Young ◽  
Stephen Rathbun ◽  
...  

Rationale Supervised treadmill exercise for claudication in peripheral arterial disease is effective but poorly tolerated because of ischemic leg pain. Near infrared spectroscopy allows non-invasive detection of muscle ischemia during exercise, allowing for characterization of tissue perfusion and oxygen utilization during training. Objective We evaluated walking time, muscle blood flow, and muscle mitochondrial capacity in patients with peripheral artery disease after a traditional pain-based walking program and after a muscle oxygen-guided walking program. Method and results Patients with peripheral artery disease trained thrice weekly in 40-minute-long sessions for 12 weeks, randomized to oxygen-guided training ( n = 8, age 72 ± 9.7 years, 25% female) versus traditional pain-based training ( n = 10, age 71.6 ± 8.8 years, 20% female). Oxygen-guided training intensity was determined by maintaining a 15% reduction in skeletal muscle oxygenation by near infrared spectroscopy rather than relying on symptoms of pain to determine exercise effort. Pain free and maximal walking times were measured with a 12-minute Gardner treadmill test. Gastrocnemius mitochondrial capacity and blood flow were measured using near infrared spectroscopy. Baseline pain-free walking time was similar on a Gardner treadmill test (2.5 ± 0.9 vs. 3.6 ± 1.0 min, p = 0.5). After training, oxygen-guided cohorts improved similar to pain-guided cohorts (pain-free walking time 6.7 ± 0.9 vs. 6.9 ± 1.1 min, p < 0.01 for change from baseline and p = 0.97 between cohorts). Mitochondrial capacity improved in both groups but more so in the pain-guided cohort than in the oxygen-guided cohort (38.8 ± 8.3 vs. 14.0 ± 9.3, p = 0.018). Resting muscle blood flow did not improve significantly in either group with training. Conclusions Oxygen-guided exercise training improves claudication comparable to pain-based training regimens. Adaptations in mitochondrial function rather than increases in limb perfusion may account for functional improvement. Increases in mitochondrial oxidative capacity may be proportional to the degree of tissue hypoxia during exercise.



2005 ◽  
Vol 288 (1) ◽  
pp. R212-R220 ◽  
Author(s):  
Shunsaku Koga ◽  
David C. Poole ◽  
Tomoyuki Shiojiri ◽  
Narihiko Kondo ◽  
Yoshiyuki Fukuba ◽  
...  

The knee extension exercise (KE) model engenders different muscle and fiber recruitment patterns, blood flow, and energetic responses compared with conventional cycle ergometry (CE). This investigation had two aims: 1) to test the hypothesis that upright two-leg KE and CE in the same subjects would yield fundamentally different pulmonary O2 uptake (pV̇o2) kinetics and 2) to characterize the muscle blood flow, muscle V̇o2 (mV̇o2), and pV̇o2 kinetics during KE to investigate the rate-limiting factor(s) of pV̇o2 on kinetics and muscle energetics and their mechanistic bases after the onset of heavy exercise. Six subjects performed KE and CE transitions from unloaded to moderate [< ventilatory threshold (VT)] and heavy (>VT) exercise. In addition to pV̇o2 during CE and KE, simultaneous pulsed and echo Doppler methods, combined with blood sampling from the femoral vein, were used to quantify the precise temporal profiles of femoral artery blood flow (LBF) and mV̇o2 at the onset of KE. First, the gain (amplitude/work rate) of the primary component of pV̇o2 for both moderate and heavy exercise was higher during KE (∼12 ml·W−1·min−1) compared with CE (∼10), but the time constants for the primary component did not differ. Furthermore, the mean response time (MRT) and the contribution of the slow component to the overall response for heavy KE were significantly greater than for CE. Second, the time constant for the primary component of mV̇o2 during heavy KE [25.8 ± 9.0 s (SD)] was not significantly different from that of the phase II pV̇o2. Moreover, the slow component of pV̇o2 evident for the heavy KE reflected the gradual increase in mV̇o2. The initial LBF kinetics after onset of KE were significantly faster than the phase II pV̇o2 kinetics (moderate: time constant LBF = 8.0 ± 3.5 s, pV̇o2 = 32.7 ± 5.6 s, P < 0.05; heavy: LBF = 9.7 ± 2.0 s, pV̇o2 = 29.9 ± 7.9 s, P < 0.05). The MRT of LBF was also significantly faster than that of pV̇o2. These data demonstrate that the energetics (as gain) for KE are greater than for CE, but the kinetics of adjustment (as time constant for the primary component) are similar. Furthermore, the kinetics of muscle blood flow during KE are faster than those of pV̇o2, consistent with an intramuscular limitation to V̇o2 kinetics, i.e., a microvascular O2 delivery-to-O2 requirement mismatch or oxidative enzyme inertia.



2008 ◽  
Vol 40 (Supplement) ◽  
pp. S304
Author(s):  
Jordan A. Guenette ◽  
Ioannis Vogiatzis ◽  
Spyros Zakythinos ◽  
Dimitrios Athanasopoulos ◽  
Spyretta Golemati ◽  
...  


CHEST Journal ◽  
2010 ◽  
Vol 138 (4) ◽  
pp. 917A
Author(s):  
Jordan A. Guenette ◽  
William R. Henderson ◽  
Paolo B. Dominelli ◽  
Jordan S. Querido ◽  
Donald E. Griesdale ◽  
...  


2009 ◽  
Vol 21 (3) ◽  
pp. 231-238 ◽  
Author(s):  
Kiyokazu Sekikawa ◽  
Kazuyuki Tabira ◽  
Noriko Sekikawa ◽  
Kotarou Kawaguchi ◽  
Makoto Takahashi ◽  
...  


2017 ◽  
Vol 103 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Adam A. Lucero ◽  
Gifty Addae ◽  
Wayne Lawrence ◽  
Beemnet Neway ◽  
Daniel P. Credeur ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document