Vascular Actions of Insulin in Health and Disease

1995 ◽  
Vol 20 (2) ◽  
pp. 127-154 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Arend Bonen

Insulin has well known metabolic effects. However, depending on the magnitude and duration of the insulin stimulus, this hormone can also produce vasodilation and vascular smooth muscle growth. The association of hyperinsulinemia with the metabolic disorders of obesity and non-insulin-dependent diabetes, as well as with the cardiovascular pathologies of hypertension and atherosclerosis, has led to suggestions that perhaps elevated insulin levels are causally related to these diseases. Alternatively, insulin resistance may develop following an increase in skeletal muscle vascular resistance, with or without hypertension, such that a reduction in skeletal muscle blood flow leads to an attenuated glucose delivery and uptake. These hypotheses are explored in this review by examining the effects of insulin on vascular smooth muscle tissue during both acute and prolonged exposure. An interaction among hyperinsulinemia, hyperglycemia, and hyperlipidemia associated with the insulin resistant state is described whereby insulin resistance can be both a cause and a result of elevated vascular resistance. The association between blood flow and insulin stimulated glucose uptake suggests that therapeutic intervention against the development of skeletal muscle vascular resistance should occur early in individuals genetically predisposed to cardiovascular pathology in order to attenuate, or avoid, insulin resistance and its sequelae. Key words: hyperinsulinemia, hyperglycemia, vascular smooth muscle, obesity, hypertension, atherosclerosis

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Nahed El-Najjar ◽  
Rashmi P. Kulkarni ◽  
Nancy Nader ◽  
Rawad Hodeify ◽  
Khaled Machaca

Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+signaling, including most prominently an inhibition of the passive ER Ca2+leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+signaling machinery are different.


2004 ◽  
Vol 97 (3) ◽  
pp. 1130-1137 ◽  
Author(s):  
Csongor Csekő ◽  
Zsolt Bagi ◽  
Akos Koller

We hypothesized that hydrogen peroxide (H2O2) has a role in the local regulation of skeletal muscle blood flow, thus significantly affecting the myogenic tone of arterioles. In our study, we investigated the effects of exogenous H2O2 on the diameter of isolated, pressurized (at 80 mmHg) rat gracilis skeletal muscle arterioles (diameter of ∼150 μm). Lower concentrations of H2O2 (10−6–3 × 10−5 M) elicited constrictions, whereas higher concentrations of H2O2 (6 × 10−5–3 × 10−4 M), after initial constrictions, caused dilations of arterioles (at 10−4 M H2O2, −19 ± 1% constriction and 66 ± 4% dilation). Endothelium removal reduced both constrictions (to −10 ± 1%) and dilations (to 33 ± 3%) due to H2O2. Constrictions due to H2O2 were completely abolished by indomethacin and the prostaglandin H2/thromboxane A2 (PGH2/TxA2) receptor antagonist SQ-29548. Dilations due to H2O2 were significantly reduced by inhibition of nitric oxide synthase (to 38 ± 7%) but were unaffected by clotrimazole or sulfaphenazole (inhibitors of cytochrome P-450 enzymes), indomethacin, or SQ-29548. In endothelium-denuded arterioles, clotrimazole had no effect, whereas H2O2-induced dilations were significantly reduced by charybdotoxin plus apamin, inhibitors of Ca2+-activated K+ channels (to 24 ± 3%), the selective blocker of ATP-sensitive K+ channels glybenclamide (to 14 ± 2%), and the nonselective K+-channel inhibitor tetrabutylammonium (to −1 ± 1%). Thus exogenous administration of H2O2 elicits 1) release of PGH2/TxA2 from both endothelium and smooth muscle, 2) release of nitric oxide from the endothelium, and 3) activation of K+ channels, such as Ca2+-activated and ATP-sensitive K+ channels in the smooth muscle resulting in biphasic changes of arteriolar diameter. Because H2O2 at low micromolar concentrations activates several intrinsic mechanisms, we suggest that H2O2 contributes to the local regulation of skeletal muscle blood flow in various physiological and pathophysiological conditions.


1988 ◽  
Vol 66 (1) ◽  
pp. 101-105 ◽  
Author(s):  
P. Kubes ◽  
C. K. Chapler ◽  
S. M. Cain

Redistribution of blood flow away from resting skeletal muscle does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p < 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p < 0.05) during anemia and was decreased (p < 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p < 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct. The data indicate that (i) maximal sympathetic stimulation produced a significant decrease in both skeletal muscle and hindlimb blood flow during anemia, (ii) the reduction in blood flow in these areas was less with sympathetic stimulation during anemia than at normal Hct., and (iii) the anemic stimulus (Hct. = 14%) does not activate maximal sympathetic vasoconstrictor tone in the skeletal muscle.


2002 ◽  
Vol 102 (5) ◽  
pp. 523-529 ◽  
Author(s):  
Eleanor M. SCOTT ◽  
John P. GREENWOOD ◽  
Giovanni VACCA ◽  
John B. STOKER ◽  
Stephen G. GILBEY ◽  
...  

It has been shown that sustained insulin infusion causes an increase in sympathetic vasoconstrictor discharge but, despite this, also causes peripheral vasodilatation. The present study was designed to determine in healthy subjects the effect of ingestion of a carbohydrate meal, with its attendant physiological insulinaemia, on vascular resistance in and sympathetic vasoconstrictor discharge to the same vascular bed, and the relationship between these parameters. Fifteen healthy subjects were studied for 2h following ingestion of a carbohydrate meal. Calf vascular resistance was measured by venous occlusion plethysmography, and muscle sympathetic nerve activity was assessed by peroneal microneurography. Five of the subjects also ingested water on a separate occasion, as a control. Following the carbohydrate meal, the serum insulin concentration increased to 588±72pmol/l. This was associated with a 47% increase in skeletal muscle blood flow (P < 0.001), a 39% fall in vascular resistance (P < 0.001) and a 57% increase in sympathetic activity (P < 0.001). There was a significant correlation between the increase in insulin and the changes in blood flow, vascular resistance and sympathetic activity. In conclusion, we have shown that ingestion of a carbohydrate meal, with its attendant physiological insulinaemia, was associated with overriding skeletal muscle vasodilatation, despite an increase in sympathetic vasoconstrictor discharge to the same vascular bed. These mechanisms may be important in ensuring optimal glucose uptake and maintenance of blood pressure postprandially.


2021 ◽  
Vol 12 ◽  
Author(s):  
William F. Jackson

Resistance arteries and downstream arterioles in the peripheral microcirculation contribute substantially to peripheral vascular resistance, control of blood pressure, the distribution of blood flow to and within tissues, capillary pressure, and microvascular fluid exchange. A hall-mark feature of these vessels is myogenic tone. This pressure-induced, steady-state level of vascular smooth muscle activity maintains arteriolar and resistance artery internal diameter at 50–80% of their maximum passive diameter providing these vessels with the ability to dilate, reducing vascular resistance, and increasing blood flow, or constrict to produce the opposite effect. Despite the central importance of resistance artery and arteriolar myogenic tone in cardiovascular physiology and pathophysiology, our understanding of signaling pathways underlying this key microvascular property remains incomplete. This brief review will present our current understanding of the multiple mechanisms that appear to underlie myogenic tone, including the roles played by G-protein-coupled receptors, a variety of ion channels, and several kinases that have been linked to pressure-induced, steady-state activity of vascular smooth muscle cells (VSMCs) in the wall of resistance arteries and arterioles. Emphasis will be placed on the portions of the signaling pathways underlying myogenic tone for which there is lack of consensus in the literature and areas where our understanding is clearly incomplete.


1998 ◽  
Vol 274 (4) ◽  
pp. H1248-H1254 ◽  
Author(s):  
Larisa V. Kuznetsova ◽  
Nicole Tomasek ◽  
Gisli H. Sigurdsson ◽  
Andrej Banic ◽  
Dominique Erni ◽  
...  

Although the laser-Doppler flowmetry (LDF) signal from skeletal muscle has been shown to provide a good measure of blood flow under some conditions, its behavior during administration of vasoactive substances has never been addressed. The aims of this study were to compare 1) changes in LDF signal with those in total muscle blood flow measured with radioactive microspheres after ganglionic blockade (chlorisondamine) and during administration of angiotensin II (ANG II), phenylephrine (PE), and isoproterenol (Iso) and 2) changes in vascular resistance estimated by the two techniques. The LDF signal from the biceps femoris muscle was investigated in anesthetized male Wistar rats. Ganglionic blockade led to a significant ( P < 0.05) fall in mean arterial pressure (MAP) [medians (lower, upper quartiles): 78 (72, 83) vs. 127 (114, 138) mmHg under basal conditions], muscle blood flow (MBF, microsphere technique; 61%), and the LDF signal (29%). Muscle vascular resistance (MVR = MAP/MBF) was increased (64%, P < 0.05), but vascular resistance estimated as MAP/LDF signal (MVRLDF) was unchanged. During ANG II and PE infusions, MAP rose ( P< 0.05) to 178 (155, 194) and 127 (124, 142) mmHg, respectively; MBF did not change compared with the preinfusion (postganglionic blockade) level and remained significantly ( P< 0.05) lower than baseline, whereas the LDF signal increased up to a level not different from baseline. MVR rose and was significantly ( P < 0.05) higher than baseline, whereas MVRLDF did not differ significantly from baseline. During Iso infusion, MAP fell [58 (56, 60) vs. 94 (92, 102) mmHg, P < 0.05], the LDF signal was reduced (49%, P < 0.05) despite a large increase in MBF (139%, P < 0.05), and MVR fell (74%, P < 0.05), whereas MVRLDF did not change vs. preinfusion level. Our results suggest that 1) changes in the LDF signal from muscle may not correlate with changes in total muscle blood flow measured by the microsphere technique during infusion of vasoactive substances and 2) the use of LDF data for estimation of MVR during changes in vascular tone in rat skeletal muscle is probably not appropriate.


Author(s):  
Darren S DeLorey

The sympathetic nervous system (SNS) is a critically important regulator of the cardiovascular system. The SNS controls cardiac output and its distribution, as well as peripheral vascular resistance and blood pressure at rest and during exercise. Aging is associated with increased blood pressure and decreased skeletal muscle blood flow at rest and in response to exercise. The mechanisms responsible for the blunted skeletal muscle blood flow response to dynamic exercise with aging have not been fully elucidated; however, increased muscle sympathetic nerve activity (MSNA), elevated vascular resistance and a decline in endothelium-dependent vasodilation are commonly reported in older adults. In contrast to aging, exercise training has been shown to reduce blood pressure and enhance skeletal muscle vascular function. Exercise training has been shown to enhance nitric oxide-dependent vascular function and may improve the vasodilatory capacity of the skeletal muscle vasculature; however, surprisingly little is known about the effect of exercise training on the neural control of circulation. The control of blood pressure and skeletal muscle blood flow also differs between males and females. Blood pressure and MSNA appear to be lower in young females compared to males. However, females experience a larger increase in MSNA with aging compared to males. The mechanism(s) for the altered SNS control of vascular function in females remain to be determined. Novelty: • This review will summarize our current understanding of the effects of aging, exercise training and sex on sympathetic vasoconstriction at rest and during exercise. • Areas where additional research is needed are also identified.


2009 ◽  
Vol 297 (2) ◽  
pp. E402-E409 ◽  
Author(s):  
Hoon Ki Sung ◽  
Yong-Woon Kim ◽  
Soo Jeong Choi ◽  
Jong-Yeon Kim ◽  
Kyung Hee Jeune ◽  
...  

To test whether chronic enhanced blood flow alters insulin-stimulated glucose uptake, we measured skeletal muscle glucose uptake in chow-fed and high-fat-fed mice injected with adenovirus containing modified angiopoietin-1, COMP-Ang1, via euglycemic-hyperinsulinemic clamp. Blood flow rates and platelet endothelial cell adhesion molecule-1 positive endothelial cells in the hindlimb skeletal muscle were elevated in COMP-Ang1 compared with control LacZ. Whole body glucose uptake and whole body glycogen/lipid synthesis were elevated in COMP-Ang1 compared with LacZ in chow diet. High-fat diet significantly reduced whole body glucose uptake and whole body glycolysis in LacZ mice, whereas high-fat-fed COMP-Ang1 showed a level of whole body glucose uptake that was comparable with chow-fed LacZ and showed increased glucose uptake compared with high-fat-fed LacZ. Glucose uptake and glycolysis in gastrocnemius muscle of chow-fed COMP-Ang1 were increased compared with chow-fed LacZ. High-fat diet-induced whole body insulin resistance in the LacZ was mostly due to ∼40% decrease in insulin-stimulated glucose uptake in skeletal muscle. In contrast, COMP-Ang1 prevented diet-induced skeletal muscle insulin resistance compared with high-fat-fed LacZ. Akt phosphorylation in skeletal muscle was increased in COMP-Ang1 compared with LacZ in both chow-fed and high-fat-fed groups. These results suggest that increased blood flow by COMP-Ang1 increases insulin-stimulated glucose uptake and prevents high-fat diet-induced insulin resistance in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document