Design capacities of joints with laterally loaded nails

2001 ◽  
Vol 28 (2) ◽  
pp. 282-290 ◽  
Author(s):  
Ian Smith ◽  
Steven T Craft ◽  
Pierre Quenneville

Capacities of joints with laterally loaded nails may be predicted using "European yield" type models (EYMs) with various levels of complexity. EYMs presume that a nail and the wood on which it bears exhibit a rigid–plastic stress–strain response. Consideration is given in this paper to the "original" model published by K.W. Johansen in 1949, an empirical approximation proposed by L.R.J. Whale and coworkers in 1987, and a curtailed and "simplified" model proposed by H.J. Blass and coworkers in 1999. Predictions from the various EYMs are compared with experimentally determined ultimate capacities of single and double shear joints. Experiments covered a range of combinations of member thicknesses and two nail sizes. The impact of modelling assumptions is illustrated in the context of the Canadian timber design code. Suggestions are made regarding the necessary level of complexity for nailed joint models used in design.Key words: timber, joints, nails, yield model, ultimate limit state, design.

geotechnik ◽  
2014 ◽  
Vol 37 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Klaus Thieken ◽  
Martin Achmus ◽  
Kirill Alexander Schmoor

1996 ◽  
Vol 33 (5) ◽  
pp. 815-821 ◽  
Author(s):  
A B Schriver ◽  
A J Valsangkar

Recently, the limit states approach using factored strength has been recommended in geotechnical design. Some recent research has indicated that the application of limit states design using recommended load and strength factors leads to conservative designs compared with the conventional methods. In this study the influence of sheet pile wall geometry, type of water pressure distribution, and different methods of analysis on the maximum bending moment and achor rod force are presented. Recommendations are made to make the factored strength design compatible with conventional design. Key words: factored strength, working stress design, ultimate limit state design, anchored sheet pile wall, bending moment, anchor rod force.


Author(s):  
Kok Kwang Phoon ◽  
Fred H. Kulhawy

A research study was completed recently that was directed toward the development of practical, reliability-based design (RBD) equations specifically for foundation engineering. Some of the key RBD principles used in the study are presented. The important considerations involved in the development of practical and robust RBD criteria are emphasized. In particular, the selection of an appropriate reliability assessment technique and the careful characterization and compilation of geotechnical variabilities are important because of their central role in the calculation of the probability of failure and the assessment of the target reliability level. An overview of a simplified RBD approach is given, and an application of this approach to the ultimate limit state design of drilled shafts under undrained uplift loading is discussed.


Author(s):  
James P. Doherty ◽  
Barry M. Lehane

This paper describes an automated algorithm for determining the length and diameter of monopile foundations subject to lateral loads with the aim of minimising the pile weight, whilst satisfying both ultimate and serviceability limit states. The algorithm works by wrapping an optimisation routine around a finite element p - y model for laterally loaded piles. The objective function is expressed as a function representing the pile volume, while the ultimate limit state and serviceability limit states are expressed as optimisation constraints. The approach was found to be accurate and near instantaneous when compared to manual design procedures and may improve design outcomes and reduce design time and costs.


Sign in / Sign up

Export Citation Format

Share Document