Girder moments in simply supported skew composite bridges

1996 ◽  
Vol 23 (4) ◽  
pp. 904-916 ◽  
Author(s):  
Tarek Ebeido ◽  
John B. Kennedy

The evaluation of girder moments in composite bridges becomes more urgent with the trend to increasing truck loads. The method specified by the American Association of State Highway and Transportation Officials for such an evaluation depends only on the centre-to-centre girder spacing. This method does not account for skew and therefore is extremely conservative for skew composite bridges, since the presence of skew reduces the longitudinal moments in the girders. The method proposed by the Ontario Highway Bridge Design Code (OHBDC) depends on the longitudinal and transverse rigidities of the bridge in addition to the girder spacing. However, this method is limited to bridges with skew parameters less than a certain value specified in the code. In this paper, the influence of skew on the moment distribution factor is investigated. Furthermore, the influences of other factors such as girder spacing, bridge aspect ratio, number of lanes, number of girders, and intermediate transverse diaphragms on the moment distribution factor are examined. An experimental program was conducted on six simply supported skew composite steel–concrete bridge models. The finite element method was used for the theoretical analysis. Good agreement is shown between the experimental results and the theoretical results. In addition, the finite element method was employed to conduct an extensive parametric study on more than 300 prototype composite bridge cases. The data generated from the parametric study were used to deduce expressions for the moment distribution factor for OHBDC truck loading and for dead load. An illustrative example is presented. Key words: bridges, codes of practice, composite, distribution, moment, reinforced concrete, skew, structural engineering, tests.

2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

1991 ◽  
Vol 40 (5) ◽  
pp. 1151-1167 ◽  
Author(s):  
J.J. Lin ◽  
M. Fafard ◽  
D. Beaulieu ◽  
B. Massicotte

2020 ◽  
Vol 150 ◽  
pp. 03013
Author(s):  
Latifa El Bouanani ◽  
Khadija Baba ◽  
Lahcen Bahi ◽  
Choukri Cherradi

Several methods are proposed for improving the slopes stability. We are studying the use of a new technique: concrete lozenges channels. The objective of this technique is to stabilize the slope against water erosion. In addition, it makes it possible to combine both mechanical protection with concrete lozenges channels and protection by plant engineering techniques with plants adapted to the area. The present study is part of the continuation of a parametric study whose purpose was to define the optimal design of concrete lozenges channels. Using the finite element method, the purpose is to study the geotechnical stability of a slope stabilized by said lozenges and to define their constructive arrangements.


Author(s):  
А.И. Притыкин

В справочной литературе содержатся расчетные зависимости для частот свободных колебаний балок со сплошной стенкой, но отсутствуют данные по собственным колебаниям перфорированных балок. В то же время в судостроении и строительной практике широко распространены балки с перфорированной стенкой, содержащей вырезы круглой, овальной и прямоугольной формы. В статье проведен анализ влияния вырезов на частоту свободных колебаний перфорированных свободно опертых балок. При этом первоначально рассматривались балки со сплошной стенкой, а затем балки таких же размеров с вырезами. Для удобства практических вычислений известная зависимость была трансформирована к виду, позволяющему оценить частоту колебаний только по соотношению площадей полки и стенки и габаритным размерам балки без необходимости определения ее момента инерции и погонной массы. Аналогичные зависимости были получены и для перфорированных балок с круглыми и прямоугольными вырезами, в которых дополнительными факторами являлись параметры перфорации: относительная высота вырезов и относительная ширина перемычек. При отсутствии вырезов формулы для перфорированных балоксводятся к формуле для балки со сплошной стенкой.Сравнительный анализ частот проводился путем расчета по аналитическим зависимостям и методом конечных элементов с использованием программного комплекса ANSYS. На основе проведенного анализа сделан вывод, что наличие регулярно расположенных вырезов с высотой, не превышающей рекомендации Морского Регистра РФ, в зависимости от параметров перфорации приводит к разному повышению частот собственных колебаний однопролетных балок, хотя степень их повышения невелика. Предложенные аналитические зависимости для балок разного конструктивного оформления удовлетворительно согласуются с результатами расчетов МКЭ. In manual on the ship structural mechanics the analytical relations for determination of the natural frequencies of the beams with solid web are given, but there are no data about proper vibration of perforated beams. At the same time in shipbuilding and in structural industry the perforated beams with circular, rectangular and oval openings are widely used. In this article the analysis of influence of openings on the natural frequencies of the simply supported perforated beams is performed. Initially it was considered beams with solid web and then beams of the same dimensions with openings. For commodity of practical calculations, the well-known relation was transformed to the form allowing to appreciate frequency of vibration only with knowledge of ratio of areas of shelves and web without necessity of finding their moment of inertia and running mass of beam. Similar relations were obtained for perforated beams with circular and rectangular openings, in which additional arguments were such parameters of perforation as related depth of openings and related width of web-posts. In case of absence of openings, the formulas for perforated beams are reduced to formula for beam with solid web. Comparative analysis was performed by calculations according to analytical relations and with the finite element method using the program complex ANSYS. On base of performed analysis it was made conclusion that existence of regularly located openings with depth not extending recommendations of Russian Maritime Register, in dependence on parameters of perforation brings to different increasing of natural frequencies of vibration of one span beams, although degree of this increasing is not high. Suggested analytical relations for beams of different constructive design are in a good correlation with results obtained by the finite element method.


2008 ◽  
Vol 69 (2) ◽  
pp. 147-162 ◽  
Author(s):  
Mário Trichês Júnior ◽  
Samir N.Y. Gerges ◽  
Roberto Jordan

Author(s):  
Kenneth Carroll ◽  
Ernesto Gutierrez-Miravete

When a simply supported composite plate is subjected to a lateral load, the presence of the twist coupling stiffnesses in the governing differential equations of equilibrium does not allow the determination of an exact solution for the deflection and numerical methods must be used. This paper describes a comparison of computed approximations to the deflection of composite laminates subjected to transverse loading obtained using the Ritz method and the finite element method. The Ritz method is implemented with the symbolic manipulation program Maple and ANSYS is used to perform the finite element calculations. Reliable results are obtained using both methods.


2021 ◽  
Author(s):  
Gareth Forbes

This paper provides a breif description of the moving load problem (force or mass) across a structure. Development of a matlab script to solve the analytical equations of motion is provided. The method of implementation to solve this type of structural dynamics, using the Finite Element Method is then described with a matlab script for a simply supported beam provided. Additionally, a script and method for implementing the Finite Element Method using ANSYS APDL is also given.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6825
Author(s):  
Paweł Idziak ◽  
Krzysztof Kowalski

The article presents the results of work on an effective numerical study of selected transient states of a low-power electrical machine. The object of detailed research was a synchronized squirrel-cage induction motor. Its ability to work at a synchronous speed was enabled by obtaining reluctance torque, caused by an imposed asymmetry between the direct and quadrature reluctances of the rotor. The difference between the reluctances was achieved by changing the rotor geometry by milling additional deep grooves. The modifications of the rotor did not damage the continuity of the rotor cage. Imposed lots were arranged symmetrically around the rotor circumference. In order to study the performance of the modified motor, a parameterized, numerical model of the machine was developed to evaluate the impact of the geometry of the slots. The developed three dimensional (3D) model of the electromagnetic phenomena in the studied magnetic circuit employs the finite element method (FEM). The model takes into account the saturation of the machine’s magnetic circuit and the skew of the rotor cage bars as well as the mechanical equilibrium of the terrain system including the moment of inertia and frictional torque in the bearings as well as the load torque resulting from the operation of the internal fan. The simulation study concerned the starting process of the machine under different values of the load. The influence of the supply voltage phase angle at the moment of start-up and the initial position of the rotor in relation to the stator was investigated. In order to calibrate the model, tests of the physical object were performed. The corrections introduced concerned the magnetization characteristics of the magnetic circuit. The results obtained confirm the correctness of the adopted strategy of testing the operational properties of the considered engine.


1994 ◽  
Vol 21 (2) ◽  
pp. 237-250 ◽  
Author(s):  
Jian Jun Lin ◽  
Denis Beaulieu ◽  
Mario Fafard

Using post-tensioned steel rods for strengthening noncomposite slab-on-steel girder bridges has the beneficial effects of both stabilizing the steel girders laterally and developing partial composite action longitudinally. The stabilizing effect and development of partial composite action are achieved by taking advantage of friction developed at the steel–concrete interface. A bridge reinforced by this technique is expected to have a higher load-carrying capacity and better load distribution under heavy traffic loads. Prestressed rods have been successfully used to strengthen 1/3 scale noncomposite bridge models in laboratory.The concrete slab-on-steel girder bridge models reinforced by prestressed rods are analyzed numerically in this paper by the use of the finite element method. Corresponding noncomposite models are also simulated for comparison to investigate the efficiency of this strengthening technique. The effects of variables such as the number of rods, prestressing level, type of load, slab thickness, steel girder slenderness, girder spacing, and ratio of radii of gyration of steel girders on the strengthening efficiency are studied by the finite element method. A full-scale bridge is analyzed to demonstrate the effect of the proposed reinforcing technique. Key words: bridge, composite action, contact, finite element, friction, parametric study, strengthening.


Sign in / Sign up

Export Citation Format

Share Document