Alkaline extraction of toxin from spores of the mosquito pathogen, Bacillus sphaericus strain 1593

1983 ◽  
Vol 29 (2) ◽  
pp. 271-275 ◽  
Author(s):  
Elizabeth West Davidson

Toxin was extracted from spores of the mosquito pathogen Bacillus sphaericus strain 1593 using 0.05 M NaOH. The molecular weight of this toxin was 35 000–54 000. Toxic activity of this extract was resistant to a variety of enzymes including subtilisin, but was degraded by pronase. Antiserum produced to 1593 spore toxin neutralized spore toxin and cytoplasmic toxin activity, but did not react with Bacillus thuringiensis var. israelensis crystal toxin, nor did var. israelensis toxin antiserum react with B. sphaericus toxin. Crystallike parasporal inclusions accompanying the B. sphaericus 1593 spores were removed by NaOH extraction.

1988 ◽  
Vol 34 (6) ◽  
pp. 740-747 ◽  
Author(s):  
Margaret Bibilos ◽  
Robert E. Andrews Jr.

Proteases produced during growth and sporulation of four strains of Bacillus thuringiensis were examined. Low levels of proteolytic activity were detected during the late exponential phase of growth in all four strains: two strains of B. thuringiensis subsp. kurstaki and one strain each of subsp. israelensis and berliner. In all strains, protease activities increased dramatically at the onset of sporulation. The principal proteases, both extra- and intra-cellular, were neutral, metal-loproteases. The pH optima and substrate specificities of proteases extracted from cells in various stages of growth and sporulation indicated that substantial diversity existed among the strains. Intracellular proteases from all four strains converted the 135 000 molecular weight protoxin of strain HD251, an isolate previously shown to have reduced intracellular proteolytic activity and which normally does not contain a protein of the lower molecular weight, to a 68 000 molecular weight toxin. Cell-free translational activity of extracts from strain HD251 were approximately fivefold more active than were equivalent extracts from strain LB1 presumably because of the reduced intracellular proteolytic activity of this strain.


2014 ◽  
Vol 80 (8) ◽  
pp. 2484-2492 ◽  
Author(s):  
Hedwig-Annabell Schild ◽  
Sebastian W. Fuchs ◽  
Helge B. Bode ◽  
Bernd Grünewald

ABSTRACTThe spore-forming bacteriumPaenibacillus larvaecauses a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced byP. larvaeare as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee,Apis mellifera carnica, with differentP. larvaeisolates. Honeybee larvae were rearedin vitroin 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates ofP. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts ofP. larvaecultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate thatP. larvaesecretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) ofP. larvae. Genome mining ofP. larvaesubsp.larvaeBRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential ofP. larvaeto produce such compounds.


2011 ◽  
Vol 27 (1) ◽  
pp. 45-55 ◽  
Author(s):  
John F. Anderson ◽  
Francis J. Ferrandino ◽  
Douglas W. Dingman ◽  
Andrew J. Main ◽  
Theodore G. Andreadis ◽  
...  

1982 ◽  
Vol 114 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Stephen P. Wraight ◽  
Daniel Molloy ◽  
Patricia McCoy

AbstractBacillus thuringiensis var. israelensis (serotype H-14) and B. sphaericus strain 1593 were tested against Aedes stimulons larvae in the laboratory and in 38-cm-diam, open-ended cylinders embedded in the bottom detritus of a woodland pool. Estimates of LC50 were lower against fourth instars in the field at a mean temperature of 15.9 °C than in the laboratory at 21.1 °C. The greater efficacy in the field was attributed to high daytime water temperatures (mean 20.5 °C) following treatment and exposure of the larvae to substantially greater amounts of toxic material in a larger volume of water than in the laboratory. The regression of probit on log10 concentration was not linear over the entire range of mortality caused by B. sphaericus, increasing the difficulty of estimation of LC values. Bacillus sphaericus was significantly less active than B. thuringiensis.


2019 ◽  
Vol 98 (8) ◽  
pp. 893-896
Author(s):  
Svetlana A. Roslavtseva

Mosquito control is necessary to improve the epidemic and, consequently, the sanitary and hygienic situation in human settlements. At the same time, the safest and more environmentally friendly way of controlling is not the fight against adult mosquitoes, but the treatment of reservoirs with microbiological larvicides based on entomopathogenic, aerobic, spore-forming, saprophytic bacteria Bacillus thuringiensis (de Barjac) (Bti). A new serotype of the bacterium B. thuringiensis was found in Israel in the Negev desert. This serotype being more active against larvae of blood-sucking and non-blood-sucking mosquitoes and midges than previously known serotypes, was named israelensis. Bti endotoxin is a typical insecticide with intestinal type of action for different mosquito species. For example, Bti H14 is highly insecticidal to the larvae of Aedes aegypti and Ae. albopictus at very low concentrations. The parasporal body (endotoxin crystal), a crystalline protein consisted of four main polypeptides and two minor polypeptides, possesses of a larvicidal action. Larvicidal activity is associated with a synergistic effect in a combination of four polypeptides. The possibility of development of resistance to products based on Bti and Bacillus sphaericus in populations of mosquitoes (Culicidae) was investigated. The use of domestic microbiological formulations based on Bti («Baktitsid», «Larviol-pasta», and «Antinat») was shown an eradication the larvae of bloodsucking mosquitoes and midges to be possible and rational, since they are not generated resistant populations of mosquitoes. This is confirmed by more than 30 years of the use of such formulations.


2020 ◽  
Vol 57 (6) ◽  
pp. 1852-1856
Author(s):  
Sebastian E González-Villarreal ◽  
Mónica García-Montelongo ◽  
Jorge E Ibarra

Abstract The Cry1C protein family of Bacillus thuringiensis form bipyramidal crystals, which are commonly associated with toxic activity against lepidopteran species; however, some members of this family may also be toxic to dipterans. In the present work, the Cry1Ca16 protein, synthesized by the B. thuringiensis LBIT-1217 strain, was analyzed. The gene coding for this protein was amplified, sequenced, and cloned into the pSTAB vector, which was electro-transferred into the acrystalliferous B. thuringiensis 4Q7 strain. The recombinant strain showed the expected bipyramidal crystal morphology, identical to the original LBIT-1217 strain and exhibited toxicity against larvae of Aedes aegypti (Diptera). Pure crystals from the recombinant strain were used in bioassays against Ae. aegypti larvae, estimating an LC50 of 4.61 μg/ml. Further studies on Cry1Ca16 mosquitocidal potential included joint-action tests with the Cyt1Aa protein crystals from B. thuringiensis israelensis. An LC50 using pure Cyt1Aa crystals was estimated at 0.73 μg/ml, whereas an LC50 of 0.61 μg/ml was estimated when both toxins were tested together. Data from these bioassays was analyzed using joint-action tests such as the Tammes-Bakuniak graphical method and the formula proposed by Tabashnik (1992). Both tests clearly showed a synergistic effect between these two toxins.


2004 ◽  
Vol 382 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Ján MUCHA ◽  
Jiří DOMLATIL ◽  
Günter LOCHNIT ◽  
Dubravko RENDIĆ ◽  
Katharina PASCHINGER ◽  
...  

Insects express arthro-series glycosphingolipids, which contain an α1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian α1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcβ1,4GlcNAcβ1-R α-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal β-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an α1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac.


Sign in / Sign up

Export Citation Format

Share Document