Effect of some physical and chemical parameters on the fermentation of cellulose to methane by a coculture system

1983 ◽  
Vol 29 (11) ◽  
pp. 1475-1480 ◽  
Author(s):  
Victoria M. Laube ◽  
Stanley M. Martin

In the fermentation of cellulose to methane by the triculture of Acetivibrio cellulolyticus – Desulfovibrio sp. – Methanosarcina barkeri, methanogenesis was the rate-limiting step. The optimal temperature was 35 °C. In the presence of initially added hydrogen, initiation of cellulose hydrolysis was delayed until most of the hydrogen was metabolized, and then the fermentation which followed was comparable with the N2: CO2 control. Increased CH4 yields and rates of formation were stoichiometrically related to the utilization of the hydrogen initially present. Added acetate had no effect on cellulolysis. The increased yields of CH4 observed could be accounted for by utilization of the added acetate. When Methanobrevibacter sp. was included in the coculture (without added H2 or acetate), no hydrogen accumulated and lower rates of acetate utilization and subsequent CH4 evolution were observed. These results suggest a requirement for hydrogen by M. barkeri for efficient acetate utilization. Controlling the pH at 6.8 increased the amount of cellulose degraded, but CH4 yields were lower and no acetate was used. Increasing sulfate levels altered the ratio of fermentation products but had no effect on cellulose degradation. Lower CH4 yields were obtained at elevated sulfate concentrations.

2021 ◽  
Vol 22 (7) ◽  
pp. 3523
Author(s):  
Hongfei Su ◽  
Zhenlun Xiao ◽  
Kefu Yu ◽  
Qi Zhang ◽  
Chunrong Lu ◽  
...  

β-Glucosidase is a microbial cellulose multienzyme that plays an important role in the regulation of the entire cellulose hydrolysis process, which is the rate-limiting step in bacterial carbon cycling in marine environments. Despite its importance in coral reefs, the diversity of β-glucosidase-producing bacteria, their genes, and enzymatic characteristics are poorly understood. In this study, 87 β-glucosidase-producing cultivable bacteria were screened from 6 genera of corals. The isolates were assigned to 21 genera, distributed among three groups: Proteobacteria, Firmicutes, and Actinobacteria. In addition, metagenomics was used to explore the genetic diversity of bacterial β-glucosidase enzymes associated with scleractinian corals, which revealed that these enzymes mainly belong to the glycosidase hydrolase family 3 (GH3). Finally, a novel recombinant β-glucosidase, referred to as Mg9373, encompassing 670 amino acids and a molecular mass of 75.2 kDa, was classified as a member of the GH3 family and successfully expressed and characterized. Mg9373 exhibited excellent tolerance to ethanol, NaCl, and glucose. Collectively, these results suggest that the diversity of β-glucosidase-producing bacteria and genes associated with scleractinian corals is high and novel, indicating great potential for applications in the food industry and agriculture.


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


Sign in / Sign up

Export Citation Format

Share Document