Comparison of spore proteins among species of the cellular slime moulds Dictyostelium and Polysphondylium as examined by immunological cross-reactivity

1988 ◽  
Vol 34 (7) ◽  
pp. 891-896 ◽  
Author(s):  
Yohko Yamada ◽  
Koji Okamoto ◽  
Ikuo Takeuchi

Spore proteins of six cellular slime mould species, Dictyostelium discoideum, D. mucoroides, D. purpureum, D. lacteum, Polysphondylium violaceum, and P. pallidum were studied. The spore proteins were cross-reacted with four different polyclonal antibodies produced against D. mucoroides spores and D. discoideum major spore coat proteins SP96, SP70, and SP60 by SDS polyacrylamide gel electrophoresis and immunoblotting. The spore proteins of D. discoideum and D. mucoroides showed the strongest cross-reactivity with all the antisera and also produced many common protein bands, thus reflecting their morphological similarities. Polysphondylium violaceum, which is quite distinct in morphology from D. discoideum and D. mucoroides, produced the second strongest cross-reactivity. In contrast, the proteins of D. purpureum showed little cross-reactivity, although morphologically it closely resembles D. mucoroides. The developmental changes of these spore proteins were investigated by cross-reacting the antisera against vegetative and slug cell proteins. In the cases of D. discoideum and D. mucoroides, the band patterns of slug proteins coincided with those of spores, which suggested that most of the spore proteins had already accumulated at the slug stage. However, this was not the case with P. violaceum, which suggested that spore proteins of this species cross-reactive with the antisera were synthesized or modified at the culmination stage.

2003 ◽  
Vol 185 (4) ◽  
pp. 1443-1454 ◽  
Author(s):  
Erh-Min Lai ◽  
Nikhil D. Phadke ◽  
Maureen T. Kachman ◽  
Rebecca Giorno ◽  
Santiago Vazquez ◽  
...  

ABSTRACT The outermost proteinaceous layer of bacterial spores, called the coat, is critical for spore survival, germination, and, for pathogenic spores, disease. To identify novel spore coat proteins, we have carried out a preliminary proteomic analysis of Bacillus subtilis and Bacillus anthracis spores, using a combination of standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation and improved two-dimensional electrophoretic separations, followed by matrix-assisted laser desorption ionization-time of flight and/or dual mass spectrometry. We identified 38 B. subtilis spore proteins, 12 of which are known coat proteins. We propose that, of the novel proteins, YtaA, YvdP, and YnzH are bona fide coat proteins, and we have renamed them CotI, CotQ, and CotU, respectively. In addition, we initiated a study of coat proteins in B. anthracis and identified 11 spore proteins, 6 of which are candidate coat or exosporium proteins. We also queried the unfinished B. anthracis genome for potential coat proteins. Our analysis suggests that the B. subtilis and B. anthracis coats have roughly similar numbers of proteins and that a core group of coat protein species is shared between these organisms, including the major morphogenetic proteins. Nonetheless, a significant number of coat proteins are probably unique to each species. These results should accelerate efforts to develop B. anthracis detection methods and understand the ecological role of the coat.


1956 ◽  
Vol 33 (4) ◽  
pp. 645-657
Author(s):  
B. M. SHAFFER

1. A study has been made of acrasin, the agent inducing chemotaxis in the amoebae of cellular slime moulds. 2. A method has been developed for subjecting sensitive amoebae to a fluctuating gradient set up by an artificial source that can be renewed at intervals of as little as a few seconds with fresh test solution. 3. Amoebae orient to a gradient maintained with the cell-free liquid freshly obtained from the immediate surroundings of a natural source. 4. Acrasin solution as secreted loses its activity very rapidly at room temperature. 5. A highly active stable solid is obtained by drying methanolic culture extracts; it resists boiling and exposure to acids and alkalis. Its solubility decreases rapidly in passing up the alcohol series. 6. The original instability has been shown to be due to the presence of another extracellular slime-mould product, possibly an enzyme; it, unlike acrasin, cannot pass rapidly across a dialysis membrane, is heat labile, and can be precipitated by ammonium sulphate. 7. The advantages of the organism's itself inactivating acrasin are considered. 8. Some of the advantages of a source's releasing acrasin in pulses are discussed; but it is not essential for orientation for it to do so. 9. Sensitive amoebae not only are oriented by an acrasin solution but are caused to secrete acrasin: this is the basis of a chemotactic relay system.


1992 ◽  
Vol 96 (8) ◽  
pp. 670-672 ◽  
Author(s):  
Steven L. Stephenson ◽  
John C. Landolt

2003 ◽  
Vol 31 (3) ◽  
pp. 719-722 ◽  
Author(s):  
A.G. McDonald

Of the many examples of oscillatory kinetic behaviour known, several are briefly reviewed, including those of glycolysis, the peroxidase–oxidase reaction and oscillations in cellular calcium concentration. It is shown that simple mathematical models employing allosteric rate laws are sufficient to explain the instability of the steady state and the appearance of sustained oscillations. The cAMP-signalling systems of cellular slime moulds and the dynamics of intracellular calcium oscillations illustrate the importance of such oscillophores to inter- and intra-cellular communication and differentiation.


Nature ◽  
1966 ◽  
Vol 209 (5028) ◽  
pp. 1152-1152 ◽  
Author(s):  
HOWARD M. SNYDER ◽  
COSTANTSE CECCARINI

Sign in / Sign up

Export Citation Format

Share Document