A freeze-fracture electron microscopic study of Frankia in root nodules of Alnus incana grown at three oxygen tensions

1990 ◽  
Vol 36 (2) ◽  
pp. 97-108 ◽  
Author(s):  
R. M. Abeysekera ◽  
William Newcomb ◽  
W. B. Silvester ◽  
John G. Torrey

Nodulated plants of Alnus incana ssp. rugosa and ssp. incana were grown with the roots exposed to 5, 21, and 40 kPa O2. The nodules were studied by freeze-fracture transmission electron microscopy to determine the effect of varying O2 tension on the numbers of lipid laminae in the Frankia envelope. Lipid laminae were present in the cell envelopes of hyphae, stalks, and symbiotic vesicles. The mean number of lipid laminae in hyphal envelopes varied from five to nine. Stalks of symbiotic vesicles contained mean numbers of 35–59 lipid laminae over the range of pO2's studied. Symbiotic vesicle envelopes showed mean numbers of lipid laminae varying from 48 to 94. The numbers of lipid laminae were observed to increase significantly in the distal regions of the symbiotic vesicles in response to raised pO2 while the numbers on the proximal portions remained unchanged. The increase in the numbers of lipid laminae in response to raised pO2 was not sufficient to account for the expected increase in resistance to O2 required at the symbiotic vesicle envelope if lipid laminae formed the exclusive diffusion barrier to O2. These results suggest that lipid laminae surrounding symbiotic vesicles may not constitute the only O2 protection mechanism in Alnus nodules. Key words: Alnus incana, Frankia, nitrogen fixation, actinorhizal nodules, Actinomycetes.

1978 ◽  
Vol 56 (5) ◽  
pp. 502-531 ◽  
Author(s):  
William Newcomb ◽  
R. L. Peterson ◽  
Dale Callaham ◽  
John G. Torrey

Correlated fluorescence, bright-field, transmission electron, and scanning electron microscopic studies were made on developing root nodules of Comptonia peregrina (L.) Coult. (Myricaceae) produced by a soil actinomycete which invades the root and establishes a symbiosis leading to fixation of atmospheric dinitrogen. After entering the host via a root hair infection, the hyphae of the endophyte perforate root cortical cells by local degradation of host cell walls and penetration of the host cytoplasm. The intracellular hyphae are always surrounded by host plasma membrane and a thick polysaccharide material termed the capsule. (For convenience, term intracellular refers to the endophyte being inside a Comptonia cell as distinguished from being intercellular, i.e.. between host cells, even though the former is actually extracellular as the endophyte is separated from the host cytoplasm by the host plasmalemma.) Numerous profiles of vesiculate rough endoplasmic reticulum (RER) occur near the growing hyphae. Although the capsule shows a positive Thiery reaction indicating its polysaccharide nature, the fibrillar contents of the RER do not, leaving uncertain whether the capsule results from polymers derived from the RER. Amyloplasts of the cortical cells lose their starch deposits during hyphal proliferation. The hyphae branch extensively in specific layers of the cortex, penetrating much of the host cytoplasm. At this stage, hyphal ends become swollen and form septate club-shaped vesicles within the periphery of the host cells. Lipid-like inclusions and Thiery-positive particles, possibly glycogen, are observed in the hyphae at this time. Associated with hyphal development is an increase in average host cell volume, although nuclear volume appears to remain constant. Concomitant with vesicle maturation, the mitochondrial population increases sharply, suggesting a possible relationship to vesicle function. The intimate interactions between host and endophyte during development of the symbiotic relationship are emphasized throughout.


HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Hirofumi Terai ◽  
Alley E. Watada ◽  
Charles A. Murphy ◽  
William P. Wergin

Structural changes in chloroplasts of broccoli (Brassica oleracea L., Italica group) florets during senescence were examined using light microscopy, scanning electron microscopy (SEM) with freeze-fracture technique, and transmission electron microscopy (TEM) to better understand the process of chloroplast degradation, particularly at the advanced stage of senescence. Light microscopy revealed that chloroplasts, which initially were intact and green, became obscure in shape, and their color faded during senescence. Small, colored particles appeared in cells as the florets approached the final stage of senescence and became full- to dark-yellow in color. Scanning electron microscopy showed that stroma thylakoids in the chloroplast initially were parallel to each other and grana thylakoids were tightly stacked. As senescence advanced, the grana thylakoids degenerated and formed globules. The globules became larger by aggregation as senescence progressed, and the large globules, called “thylakoid plexus,” formed numerous vesicles. The vesicles ultimately were expelled into the cytosol, and the light microscope revealed many colored particles in the senescent cells. These results indicate that the degradation of chloroplasts in broccoli florets progresses systematically, with the final product being colored particles, which are visible in yellow broccoli sepal cells.


1990 ◽  
Vol 209 ◽  
Author(s):  
J. Th. M. De Hosson ◽  
O. Kanert

ABSTRACTPulsed nuclear magnetic resonance proved to be a complementary new technique for the study of moving dislocations in b.c.c. metals. From the motion induced part of the spin-lattice relaxation rate the mean jump distance of mobile dislocationshas been measured in Vanadium as a function of temperature. The NMR experiments are combined with transmission electron microscopic investigations to reveal the static structure of defects in the samples. The NMR experiments show that the mean jump distance is nearly constant below 230 K whereas it decreases substantially above 230 K to 300 K indicating a transition that marks two different mechanisms. NMR observations in combination with TEM support the physical picture that above that transition temperature dislocation segments are stopped between localized obstacles whereas below Tc the latticefriction controls the plastic behaviour.


2011 ◽  
Vol 120 (11) ◽  
pp. 713-721 ◽  
Author(s):  
Takehisa Saito ◽  
Tetsufumi Ito ◽  
Norihiko Narita ◽  
Takechiyo Yamada ◽  
Yasuhiro Manabe

Objectives: The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. Methods: We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. Results: The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 ± 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 ± 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. Conclusions: It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.


Sign in / Sign up

Export Citation Format

Share Document