Comparing vegetative compatibility and protein banding patterns for identification of Fusarium oxysporum f.sp. apii race 2

1991 ◽  
Vol 37 (9) ◽  
pp. 669-674 ◽  
Author(s):  
K. F. Toth ◽  
M. L. Lacy

Vegetative compatibility grouping and electrophoretic separation of total proteins were compared as possible techniques for identifying isolates of Fusarium oxysporum f.sp. apii race 2, the cause of fusarium yellows of celery. Vegetative compatibility grouping was determined by pairing chlorate-tolerant, nitrate-nonutilizing mutants on a minimal medium containing nitrate as the sole nitrogen source. Heterokaryon formation, which resulted in wild-type growth, occurred only between mutants from vegetatively compatible isolates. All isolates of F. oxysporum f.sp. apii race 2 examined were placed within a unique vegetative compatibility group that excluded F. oxysporum f.sp. apii race 1 and the 11 other formae speciales of F. oxysporum tested. Few differences were observed in protein banding patterns among isolates of F. oxysporum f.sp. apii race 2, F. oxysporum f.sp. apii race 1, 11 other formae speciales of F. oxysporum, and 2 formae speciales of F. solani on 12% polyacrylamide gels. No banding pattern unique to F. oxysporum f.sp. apii race 2 was observed. Vegetative compatibility grouping could be accomplished more rapidly than greenhouse pathogenicity tests and more accurately identified race 2 isolates in a population of isolates of F. oxysporum from muck soils than did greenhouse pathogenicity tests or electrophoretic protein banding patterns. Key words: celery, fusarium yellows, nitrate-nonutilizing mutants, polyacrylamide gel electrophoresis.

1991 ◽  
Vol 39 (2) ◽  
pp. 161 ◽  
Author(s):  
NY Moore ◽  
PA Hargreaves ◽  
KG Pegg ◽  
JAG Irwin

The production of volatiles on steamed rice by Australian isolates of Fusarium oxysporum f. sp. cubense correlated well with race and vegetative compatibility group (VCG). All race 4 isolates (VCGs 0120, 0129) produced distinctive volatile odours which gave characteristic gas chromatograms where the num- ber of peaks equated to VCG. Race 1 (VCGs 0124, 0125) and race 2 (VCG 0128) isolates, as well as non-pathogenic isolates of F. oxysporum from the banana rhizosphere, did not produce detectable volatiles and gave chromatograms without significant peaks.


2007 ◽  
Vol 97 (4) ◽  
pp. 461-469 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Eighty-eight isolates of Fusarium oxysporum f. sp. niveum, collected from wilted watermelon plants and infested soil in Maryland and Dela-ware, were characterized by cross pathogenicity to muskmelon, race, and vegetative compatibility. Four isolates (4.5%) were moderately pathogenic to ≥2 of 18 muskmelon cultivars in a greenhouse test, and one representative isolate also was slightly pathogenic in field microplots. The four isolates all were designated as race 2, and were in vegetative compatibility group (VCG) 0082. Of the 74 isolates to which a VCG could be assigned, 41 were in VCG 0080, the VCG distributed most widely; 27 were in VCG 0082, and were distributed in half of the 20 watermelon fields surveyed; and 6 were in the newly described VCG 0083, and were restricted to three fields. Among the isolates in VCG 0080, 8 were designated as race 0, 21 as race 1, and 12 as race 2. Of the isolates in VCG 0082, 6 were designated as race 0, 11 as race 1, and 10 as race 2. All isolates in VCG 0083 were designated as race 2. Isolates from more than one race within the same VCG or isolates from more than one VCG were recovered from single plants and fields. No differences in aggressiveness on differential watermelon cultivars were observed among isolates from different VCGs of the same race. A diverse association between virulence and VCG throughout the Mid-Atlantic region suggests that the pathotypes of F. oxysporum f. sp. niveum may be of local origin or at least long existent in the region.


Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 231-234 ◽  
Author(s):  
W. Schreuder ◽  
S. C. Lamprecht ◽  
G. Holz

Isolates of Fusarium oxysporum f. sp. melonis (72 total) obtained from 30 fields in 17 melonproducing regions in South Africa were race typed, using differential cvs. CM 17187, Doublon, Perlita, and Topmark, and grouped on the basis of vegetative compatibility. Fifty-four isolates were identified as race 0, eight as race 1, and ten as race 2. Race 0 occurred in 15 of 17 regions, whereas race 1 was sporadically recovered. Race 2 was obtained from only four fields located in one geographic region. Perlita plants (carrying the gene Fom3) inoculated with local isolates of races 0 and 2 and reference isolates of race 0 became stunted, and their leaves became yellow, thickened, and brittle. Using two inoculation methods, similar symptoms were induced by reference and local isolates of race 0 on Perlita seedlings. The results indicated that Fom3 in Perlita confers a tolerant reaction compared with the resistant reaction of gene Fom1 in Doublon and, therefore, should not be used alone in race determination tests. All isolates belonged to vegetative compatibility group 0134, indicating a high degree of genetic homogeneity among the South African F. oxysporum f. sp. melonis population.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 237-240 ◽  
Author(s):  
Matias Pasquali ◽  
Flavia Dematheis ◽  
Giovanna Gilardi ◽  
Maria Lodovica Gullino ◽  
Angelo Garibaldi

Fusarium oxysporum f. sp. lactucae, the causal agent of Fusarium wilt of lettuce, has been reported in three continents in the last 10 years. Forty-seven isolates obtained from infected plants and seed in Italy, the United States, Japan, and Taiwan were evaluated for pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing mutants were used to determine genetic relatedness among isolates from different locations. Using the vegetative compatibility group (VCG) approach, all Italian and American isolates, type 2 Taiwanese isolates, and a Japanese race 1 were assigned to the major VCG 0300. Taiwanese isolates type 1 were assigned to VCG 0301. The hypothesis that propagules of Fusarium oxysporum f. sp. lactucae that caused epidemics on lettuce in 2001-02 in Italian fields might have spread via import and use of contaminated seeds is discussed.


1999 ◽  
Vol 89 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Jurriaan J. Mes ◽  
Emma A. Weststeijn ◽  
Frits Herlaar ◽  
Joep J. M. Lambalk ◽  
Jelle Wijbrandi ◽  
...  

A collection of race 1 and race 2 isolates of Fusarium oxysporum f. sp. lycopersici was screened for vegetative compatibility and characterized by random amplified polymorphic DNA (RAPD) analysis to establish the identity and genetic diversity of the isolates. Comparison of RAPD profiles revealed two main groups that coincide with vegetative compatibility groups (VCGs). In addition, several single-member VCGs were identified that could not be grouped in one of the two main RAPD clusters. This suggests that F. oxysporum f. sp. lycopersici is a polyphyletic taxon. To assign avirulence genotypes to race 1 isolates, they were tested for their virulence on a small set of tomato lines (Lycopersicon esculentum), including line OT364. This line was selected because it shows resistance to race 2 isolates but, unlike most other race 2-resistant lines, susceptibility to race 1 isolates. To exclude the influence of other components than those related to the race-specific resistance response, we tested the virulence of race 1 isolates on a susceptible tomato that has become race 2 resistant by introduction of an I-2 transgene. The results show that both line OT364 and the transgenic line were significantly affected by four race 1 isolates, but not by seven other race 1 isolates nor by any race 2 isolates. This allowed a subdivision of race 1 isolates based on the presence or absence of an avirulence gene corresponding to the I-2 resistance gene. The data presented here support a gene-for-gene relationship for the interaction between F. oxysporum f. sp. lycopersici and its host tomato.


Plant Disease ◽  
1997 ◽  
Vol 81 (6) ◽  
pp. 592-596 ◽  
Author(s):  
T. L. Zuniga ◽  
T. A. Zitter ◽  
T. R. Gordon ◽  
D. T. Schroeder ◽  
D. Okamoto

Forty-six isolates of Fusarium oxysporum f. sp. melonis obtained from soil samples throughout melon-producing areas in New York State were identified on the basis of pathogenicity and colony morphology. Physiological races 1 and 2 were identified by their reaction on a set of differential melon cultivars. Race 1 was widely distributed, occurring in six of the seven New York counties surveyed. Twenty-seven of the 28 race 1 isolates were associated with vegetative compatibility group (VCG) 0134, whereas one was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Twelve out of 18 race 2 isolates were associated with VCG 0131, and occurred in four counties in eastern and western New York. Five isolates of race 2, associated with VCG 0130, were recovered from a farm in Washington County, as was a single race 2 isolate which was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Restriction fragment length polymorphisms in the nuclear DNA revealed variability among the isolates examined, but race 1/VCG 0134 isolates from New York and Maryland were identical or nearly so, as were race 2/VCG 0131 isolates from the two states. These findings suggest a close relationship between the populations of F. oxysporum f. sp. melonis in New York and Maryland. Race 2 isolates were more virulent than race 1 isolates, based on the number of days to first symptoms and death of melon seedlings.


1990 ◽  
Vol 36 (5) ◽  
pp. 352-358 ◽  
Author(s):  
R. P. Larkin ◽  
D. L. Hopkins ◽  
F. N. Martin

Over 250 isolates of Fusarium oxysporum collected from infected watermelon plants and soil samples from a pathogen-infested field, as well as known isolates of F. oxysporum f. sp. niveum imported from various locations around the world, were tested for pathogenicity on watermelon and used to determine vegetative compatibility groups (VCGs) within F. oxysporum f. sp. niveum. Vegetative compatibility was assessed on the basis of heterokaryon formation among nitrate-nonutilizing mutants. Race determinations were made by screening isolates on six different watermelon cultivars of varying resistance. All isolates of F. oxysporum f. sp. niveum belonged to one of three distinct VCGs, and were incompatible with isolates that were not pathogenic on watermelon. Isolates of F. oxysporum f. sp. niveum were subdivided into two races and there was a direct relationship between VCG and race. VCG 0080 consisted of race 1 isolates from five states of the United States, Taiwan, and Australia. VCG 0081 consisted solely of race 1 isolates from Florida. VCG 0082 was comprised solely of race 2 isolates, all of which were capable of causing severe wilt on all cultivars tested. Numerous Florida isolates were compatible with race 2 isolates from Texas and demonstrated comparable virulence on all cultivars, confirming the presence of race 2 in Florida. With F. oxysporum f. sp. niveum, vegetative compatibility can be utilized as an alternative or collaborative method to distinguish pathogenic from nonpathogenic strains of F. oxysporum and to differentiate subforma specialis virulence characteristics. Key words: fusarium wilt, nit mutants, watermelon.


1995 ◽  
Vol 46 (1) ◽  
pp. 167 ◽  
Author(s):  
KG Pegg ◽  
RG Shivas ◽  
NY Moore ◽  
S Bentley

A unique population of Fusarium oxysporum f. sp. cubense affecting Cavendish cv. Williams banana plants was characterized using vegetative compatibility, volatile production, RAPD-PCR analysis, pectic enzyme production and pathogenicity. The isolates were more like race 1 isolates than race 4 isolates, although they were capable of attacking Cavendish clones. The Carnarvon isolates did not belong to any of the vegetative compatibility groups (VCGs) known to occur in Australia or overseas; they belonged in the 'inodoraturn' volatile group; they had 29% genetic similarity to race 4 isolates and 76% similarity to race 1 isolates based on RAPD-PCR banding patterns; they belonged in the same pectic zymogram group as race 1 isolates and were virulent on 3-month-old Cavendish cv. Williams, Gros Michel and Pisang Gajih Merah plants in glasshouse tests.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Raúl Castaño ◽  
Barbara Scherm ◽  
Manuel Avilés

The diversity of races and prevalence of pathogenic populations of Fusarium oxysporum f. sp. dianthi (Fod) were surveyed in an area in southern Spain. From 54 farms, 132 isolates were collected from wilted carnation plants. Isolates were characterized by RAPD-PCR, DNA sequence analysis of the TEF1-α gene, and race-specific molecular markers. Selected isolates from RAPD groups were phenotypically evaluated by pathogenicity tests. Data analysis showed that Fod race 2 was the most frequent and prevalent race in the study area, followed by race 1/8. Moreover, phylogenetic analyses showed similar results, which were different to those of the race-specific PCR assays. It was concluded that (i) seven isolates were not classified in groups where Fod testers were clustered; even they showed different results when race-specific markers were used, (ii) ten isolates with retarded race 1 or race 8 specific band were characterized as F. proliferatum by TEF1-α gene sequencing and clustered into an outgroup, and (iii) six isolates failed to generate an amplification signal using race-specific markers. Furthermore, three of them were grouped close to race 2 tester according to the phylogenetic analyses, showing the same differential pathogenicity as race 2. This may indicate a Fod race 2 subgroup in this region.


2000 ◽  
Vol 51 (8) ◽  
pp. 945 ◽  
Author(s):  
K. S. Gerlach ◽  
S. Bentley ◽  
N. Y. Moore ◽  
K. G. Pegg ◽  
E. A. B. Aitken

Genetic variation among Australian isolates of the fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt in banana, was examined using DNA amplification fingerprinting (DAF). Ninety-four isolates which represented Races 1, 2, 3, and 4, and vegetative compatibility groups (VCGs) 0120, 0124, 0125, 0128, 0129, 01211, 01213/16, and 01220 were analysed. The genetic relatedness among isolates within each VCG, and between the 8 different VCGs of Foc present in Australia was determined. The DNA fingerprint patterns were VCG-specific, with each VCG representing a unique genotype. The genetic similarity among isolates within each VCG ranged from 97% to 100%. Among the different VCGs of Foc, 3 major clusters were distinguished which corresponded with race. All Race 1 and 2 isolates (VCGs 0124, 0125, 0128, and 01220) were closely related and clustered together, the Race 3 isolates from Heliconia clustered separately, and all Race 4 isolates (VCGs 0120, 0129, 01211, and 01213/16) clustered together. Fifteen isolates from Alstonville, NSW, were characterised because although they were classified as Race 2 based on their recovery from cooking banana cultivars, they belonged in VCG 0124, which had previously contained only Race 1 isolates. The occurrence of more than one race within a VCG means that vegetative compatibility grouping cannot be used to assign pathotype to pathogenic race as previously thought. It was possible to distinguish the Race 1 and Race 2 isolates within VCG 0124 using DNA fingerprinting, as each race produced a unique DNA fingerprint pattern. Among the Australian isolates, DNA fingerprinting analysis identified 9 different VCGs and genotypes of Foc.


Sign in / Sign up

Export Citation Format

Share Document