Isolation and characterization of glycerol-fermenting bacteria from the rumen of red deer

1997 ◽  
Vol 43 (12) ◽  
pp. 1102-1110 ◽  
Author(s):  
Graeme N. Jarvis ◽  
Jürgen H. Thiele ◽  
Carsten Strömpl ◽  
Edward R. B. Moore

The rumen contents of juvenile red deer (Cervus elaphus) were used as a source for the enrichment of obligately anaerobic glycerol-fermenting bacteria. Three bacterial strains were isolated from the 10−4 dilution (isolates DR6A and DR6B) and 10−9 dilution (isolate DR7) of the deer rumen contents. The isolates DR6A, DR6B, and DR7 produced ethanol (42 mM) and acetate (5 mM), propionate (31 mM) and acetate (42 mM), and formate (25 mM) and ethanol (38 mM), respectively, as the major glycerol fermentation products. Interestingly, acetate, propionate, and formate were observed to be the major glycerol fermentation products in mixed cultures obtained from the deer rumen. The three isolates were all shown to be related phylogenetically to the ruminal species Clostridium clostridiiforme, Clostridium celerecrescens, and Clostridium aerotolerans within the clostridial taxonomic cluster XIVa, on the basis of 16S rRNA gene sequence comparisons. But, because of phenotypic differences, each isolate is considered to be a new species within the genus Clostridium, which has not been previously described or isolated from the rumen ecosystem.Key words: red deer, ecology, glycerol fermentation, Clostridium, rumen, 16S rRNA.

2006 ◽  
Vol 56 (4) ◽  
pp. 721-725 ◽  
Author(s):  
Shuangya Chen ◽  
Lei Song ◽  
Xiuzhu Dong

Two mesophilic, anaerobic bacterial strains (ZLJ115T and L4-2) were isolated from the sludge of an anaerobic digester treating municipal solid waste and sewage in Fujian province, China. The strains were Gram-positive, spore-forming, motile rods (0·9–1·0×3·6–7·3 μm). Growth of the strains was observed at 20–42 °C and pH 6·0–9·5. Both strains fermented several mono- and disaccharides. The main fermentation products from glucose were acetate, ethanol, hydrogen and carbon dioxide. Optimal hydrogen production by the new isolates was observed at pH 8·8 and 39 °C, and 1·4 mol H2 was detected from fermentation of 1 mol glucose. The DNA G+C contents of strains ZLJ115T and L4-2 were 53·9 and 54·3 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates represented a novel phyletic sublineage within cluster XI of the clostridia, clustering with four thermophilic species, with <93·8 % 16S rRNA gene sequence similarity to previously described species. Phenotypically, the new isolates were distinguished from their phylogenetic relatives by growing mesophilically and by fermenting a variety of pentoses, as well as their higher genome DNA G+C content. On the basis of polyphasic evidence from this study, a novel genus and species are proposed, Sporacetigenium mesophilum gen. nov., sp. nov.; strain ZLJ115T (=DSM 16796T=AS 1.5019T) is the type strain of Sporacetigenium mesophilum.


2024 ◽  
Vol 84 ◽  
Author(s):  
A. Javaid ◽  
M. Hussain ◽  
K. Aftab ◽  
M. F. Malik ◽  
M. Umar ◽  
...  

Abstract The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.


Author(s):  
Rita Zgheib ◽  
Hussein Anani ◽  
Marine Makoa Meng ◽  
Morgane Mailhe ◽  
Davide Ricaboni ◽  
...  

Five novel bacterial strains, Marseille-P1476T (=CSURP1476T=DSM 100642T), Marseille-P3256T (=CSURP3256T=CECT 9977T), Marseille-P2936T (=CSURP2936T=DSM 103159T), Marseille-P2912T (=CSURP2912T=DSM 103345T) and Marseille-P3197T (=CSURP3197T=CCUG 71847T), were isolated from various human specimens. These five strains were not identified at the species level by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Following 16S rRNA gene sequence comparisons with the GenBank database, the highest nucleotide sequence similarities of all studied strains were obtained to members of the paraphyletic genus Olsenella . A polyphasic taxono-genomic strategy (16S rRNA gene-based and core genome-based phylogeny, genomic comparison, phenotypic and biochemical characteristics) enabled us to better classify these strains and reclassify Olsenella species. Among the studied strains, Marseille-P1476T, Marseille-P2936T and Marseille-P3197T belonged to new species of the genus Olsenella for which we propose the names Olsenella massiliensis sp. nov., Olsenella phocaeensis sp. nov. and Olsenella urininfantis sp. nov., respectively. Strains Marseille-P2912T and Marseille-P3256T belonged to a new genus for which the names Thermophilibacter provencensis gen. nov., sp. nov. and Thermophilibacter mediterraneus gen. nov., sp. nov. are proposed, respectively. We also propose the creation of the genera Parafannyhessea gen. nov., Tractidigestivibacter gen. nov. and Paratractidigestivibacter gen. nov. and the reclassification of Olsenella umbonata as Parafannyhessea umbonata comb. nov., Olsenella scatoligenes as Tractidigestivibacter scatoligenes comb. nov., and Olsenella faecalis as Paratractidigestivibacter faecalis comb. nov.


2004 ◽  
Vol 70 (12) ◽  
pp. 7520-7529 ◽  
Author(s):  
Nathan A. Magarvey ◽  
Jessica M. Keller ◽  
Valerie Bernan ◽  
Martin Dworkin ◽  
David H. Sherman

ABSTRACT A unique selective enrichment procedure has resulted in the isolation and identification of two new genera of marine-derived actinobacteria. Approximately 90% of the microorganisms cultured by using the presented method were from the prospective new genera, a result indicative of its high selectivity. In this study, 102 actinomycetes were isolated from subtidal marine sediments collected from the Bismarck Sea and the Solomon Sea off the coast of Papua New Guinea. A combination of physiological parameters, chemotaxonomic characteristics, distinguishing 16S rRNA gene sequences, and phylogenetic analysis based on 16S rRNA genes provided strong evidence for the two new genera (represented by strains of the PNG1 clade and strain UMM518) within the family Micromonosporaceae. Biological activity testing of fermentation products from the new marine-derived actinomycetes revealed that several had activities against multidrug-resistant gram-positive pathogens, malignant cells, and vaccinia virus replication.


2007 ◽  
Vol 57 (8) ◽  
pp. 1757-1761 ◽  
Author(s):  
Nihel Klouche ◽  
Marie-Laure Fardeau ◽  
Jean-François Lascourrèges ◽  
Jean-Luc Cayol ◽  
Hocine Hacene ◽  
...  

A novel, strictly anaerobic, chemo-organotrophic bacterium, designated strain VNs68T, was isolated from a well that collected water from a deep aquifer at a depth of 800 m in the Paris Basin, France. Cells were thin, non-motile, Gram-positive rods forming terminal endospores (3.0–5.0×0.5 μm). Strain VNs68T grew at temperatures between 30 and 55 °C (optimum 42 °C) and at pH 5.6–8.4 (optimum pH 7.3). It did not require salt for growth but tolerated up to 40 g NaCl l−1. Strain VNs68T was an obligate heterotroph fermenting carbohydrates such as glucose, xylose, fructose, ribose and cellobiose. Casamino acids and amino acids (arginine, serine, lysine, alanine, aspartate, asparagine, isoleucine, histidine) were also fermented. The main fermentation products from glucose were acetate with H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, nitrate and nitrite were not used as electron acceptors. The G+C content of the genomic DNA was 42.2 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain VNs68T was affiliated to cluster XI, order Clostridiales, domain Bacteria. On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain VNs68T is considered to represent a novel species of a new genus, for which the name Geosporobacter subterraneus gen. nov., sp. nov. is proposed. The type strain of Geosporobacter subterraneus is VNs68T (=DSM 17957T =JCM 14037T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2221-2225 ◽  
Author(s):  
Kegui Zhang ◽  
Lei Song ◽  
Xiuzhu Dong

Two strictly anaerobic, proteolytic bacterial strains, designated strain D3RC-2T and D3RC-3r, were isolated from a cellulose-degrading mixed culture enriched from yak rumen content. The strains were Gram-stain negative and non-spore-forming with cell sizes of 0.5–0.8×0.6–2.0 μm. The temperature range for growth was 24–46 °C (optimum 38–39 °C) and the pH range was between 5.6 and 8.7 (optimum 7.0–7.3). Both strains used soya peptone, tryptone, l-phenylalanine, l-leucine, l-methionine, l-serine, l-valine, l-threonine and l-histidine as carbon and nitrogen sources, but did not use any of the saccharides tested. The major fermentation products from PY medium were acetate, propionate and iso-butyrate. The DNA G+C contents of strains D3RC-2T and D3RC-3r were 41.0±0.1 mol% and 41.3±0.1 mol% (HPLC), respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains represented a new phyletic sublineage within the family Clostridiaceae, with <93.8 % 16S rRNA gene sequence similarity to recognized species. On the basis of the phenotypic, genotypic and physiological evidence, strains D3RC-2T and D3RC-3r are proposed as representing a novel species of a new genus, for which the name Proteiniclasticum ruminis gen. nov., sp. nov. is proposed. The type strain of the type species is D3RC-2T (=AS 1.5057T=JCM 14817T).


2021 ◽  
Vol 9 (6) ◽  
pp. 1307
Author(s):  
Sebastian Böttger ◽  
Silke Zechel-Gran ◽  
Daniel Schmermund ◽  
Philipp Streckbein ◽  
Jan-Falco Wilbrand ◽  
...  

Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not result in any bacterial growth. Furthermore, various authors found completely different bacterial spectra in odontogenic abscesses. Experimental 16S rRNA gene next-generation sequencing analysis was used to identify the microbiome of the saliva and the pus in patients with a severe odontogenic infection. The microbiome of the saliva and the pus was determined for 50 patients with a severe odontogenic abscess. Perimandibular and submandibular abscesses were the most commonly observed diseases at 15 (30%) patients each. Polymicrobial infections were observed in 48 (96%) cases, while the picture of a mono-infection only occurred twice (4%). On average, 31.44 (±12.09) bacterial genera were detected in the pus and 41.32 (±9.00) in the saliva. In most cases, a predominantly anaerobic bacterial spectrum was found in the pus, while saliva showed a similar oral microbiome to healthy individuals. In the majority of cases, odontogenic infections are polymicrobial. Our results indicate that these are mainly caused by anaerobic bacterial strains and that aerobic and facultative anaerobe bacteria seem to play a more minor role than previously described by other authors. The 16S rRNA gene analysis detects significantly more bacteria than conventional methods and molecular methods should therefore become a part of routine diagnostics in medical microbiology.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2565-2569 ◽  
Author(s):  
Cynthia Alias-Villegas ◽  
Valme Jurado ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A Gram-stain-negative, aerobic, motile, rod-shaped bacterium, strain SC13E-S71T, was isolated from tuff, volcanic rock, where the Roman catacombs of Saint Callixtus in Rome, Italy, was excavated. Analysis of 16S rRNA gene sequences revealed that strain SC13E-S71T belongs to the genus Sphingopyxis , and that it shows the greatest sequence similarity with Sphingopyxis chilensis DSM 14889T (98.72 %), Sphingopyxis taejonensis DSM 15583T (98.65 %), Sphingopyxis ginsengisoli LMG 23390T (98.16 %), Sphingopyxis panaciterrae KCTC 12580T (98.09 %), Sphingopyxis alaskensis DSM 13593T (98.09 %), Sphingopyxis witflariensis DSM 14551T (98.09 %), Sphingopyxis bauzanensis DSM 22271T (98.02 %), Sphingopyxis granuli KCTC 12209T (97.73 %), Sphingopyxis macrogoltabida KACC 10927T (97.49 %), Sphingopyxis ummariensis DSM 24316T (97.37 %) and Sphingopyxis panaciterrulae KCTC 22112T (97.09 %). The predominant fatty acids were C18 : 1ω7c, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), C14 : 0 2-OH and C16 : 0. The predominant menaquinone was MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. These chemotaxonomic data are common to members of the genus Sphingopyxis . However, a polyphasic approach using physiological tests, DNA base ratios, DNA–DNA hybridization and 16S rRNA gene sequence comparisons showed that the isolate SC13E-S71T belongs to a novel species within the genus Sphingopyxis , for which the name Sphingopyxis italica sp. nov. is proposed. The type strain is SC13E-S71T ( = DSM 25229T = CECT 8016T).


2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document