STUDIES OF LIGNIN BIOSYNTHESIS USING ISOTOPIC CARBON: XIII. THE PHENYLPROPANOID SYSTEM IN LIGNIFICATION

1963 ◽  
Vol 41 (3) ◽  
pp. 621-628 ◽  
Author(s):  
Takayoshi Higuchi ◽  
Stewart A. Brown

Techniques of isotope competition and trapping were used to study the phenylpropanoid biosynthetic pathway in lignifying wheat plants. The results in general confirm earlier findings that phenyllactic acid (PLA), p-hydroxyphenyllactic acid (HPLA), phenylpyruvic, cinnamic, caffeic, ferulic, and sinapic acids can participate in lignification. L-Phenylalanine and L-tyrosine were converted to PLA and HPLA, respectively, but there was much less conversion of cinnamic acid to PLA, or p-hydroxycinnamic acid to HPLA. A pathway from phenylalanine to cinnamic acid via PLA, and an analogous pathway involving tyrosine thus remain as possible alternatives to the established routes involving deamination of these amino acids by phenylalanine deaminase or tyrase. Feeding of non-radioactive coniferyl alcohol with ferulic acid-C14 results in the formation of both coniferyl- and sinapyl-type lignin residues having lower specific radioactivities than were obtained after the feeding of ferulic acid-C14 alone. After a 5-hour metabolic period in the presence of ferulic acid-C14, both coniferyl aldehyde and coniferyl alcohol became labelled, and the radioactivity of the aldehyde was much higher than that of the alcohol. There was no evidence of coniferin formation. These findings indicate that coniferyl alcohol is formed from ferulic acid through coniferyl aldehyde, and that coniferin is probably unnecessary for lignification, at least in species other than conifers.

1963 ◽  
Vol 41 (1) ◽  
pp. 621-628 ◽  
Author(s):  
Takayoshi Higuchi ◽  
Stewart A. Brown

Techniques of isotope competition and trapping were used to study the phenylpropanoid biosynthetic pathway in lignifying wheat plants. The results in general confirm earlier findings that phenyllactic acid (PLA), p-hydroxyphenyllactic acid (HPLA), phenylpyruvic, cinnamic, caffeic, ferulic, and sinapic acids can participate in lignification. L-Phenylalanine and L-tyrosine were converted to PLA and HPLA, respectively, but there was much less conversion of cinnamic acid to PLA, or p-hydroxycinnamic acid to HPLA. A pathway from phenylalanine to cinnamic acid via PLA, and an analogous pathway involving tyrosine thus remain as possible alternatives to the established routes involving deamination of these amino acids by phenylalanine deaminase or tyrase. Feeding of non-radioactive coniferyl alcohol with ferulic acid-C14 results in the formation of both coniferyl- and sinapyl-type lignin residues having lower specific radioactivities than were obtained after the feeding of ferulic acid-C14 alone. After a 5-hour metabolic period in the presence of ferulic acid-C14, both coniferyl aldehyde and coniferyl alcohol became labelled, and the radioactivity of the aldehyde was much higher than that of the alcohol. There was no evidence of coniferin formation. These findings indicate that coniferyl alcohol is formed from ferulic acid through coniferyl aldehyde, and that coniferin is probably unnecessary for lignification, at least in species other than conifers.


1966 ◽  
Vol 44 (4) ◽  
pp. 403-413 ◽  
Author(s):  
P. Chandra ◽  
G. Read ◽  
L. C. Vining

DL-Phenyllactic acid-α-14C, DL-phenylserine-α-14C, L-phenylalanine-carboxyl-14C, and shikimic acid-U-14C were incorporated into phenylalanine and tyrosine isolated from mycelial hydrolysates of Volucrispora aurantiaca as well as into volucrisporin. DL-m-Tyrosine-carboxyl-14C was incorporated into volucrisporin but not into the aromatic amino acids. L-Tyrosine-β-14C, cinnamic acid-α-14C, and m-hydroxycinnamic acid-α-14C were metabolized by the fungus but did not serve as precursors of volucrisporin or of mycelial phenylalanine. The results are consistent with the concept of a biosynthetic pathway to volucrisporin via phenylpyruvic and m-hydroxyphenylpyruvic acids. Substantial amounts of each radioactive substrate fed to V. aurantiaca PRL 1952 were incorporated into a brown melanoid pigment.


1962 ◽  
Vol 202 (1) ◽  
pp. 171-173 ◽  
Author(s):  
Richard P. Spencer ◽  
Ted M. Bow ◽  
Mary Anne Markulis

The amino group requirement for transintestinal transport of amino acids against a concentration gradient was investigated using hamster everted intestinal sacs. Although glycine (5 x 10–3 m) was transported against a concentration gradient, acetic acid was not. Similarly, l-phenylalanine was transported, whereas phenylpyruvic acid, phenylpropionic acid, phenyllactic acid, and cinnamic acid were not. l-Tryptophan was transported, but indolyllactic acid was not. The amino group was thus essential for transport by this system. n-Methylglycine and l-proline were accumulated from mucosa to serosa against a concentration gradient. Hence, one hydrogen of the amino group can be replaced. However, n-phenylglycine was not accumulated across these preparations, suggesting that the moiety replacing the amino hydrogen can not be sterically bulky. α-l-Alanine was transported against a concentration gradient from mucosa to serosa, but ß-alanine was not. This is in contrast to other systems which accumulate ß-alanine against a concentration gradient. Anthranilic acid, with the amino group in a relative ß position, was also not accumulated across everted intestinal sacs.


1963 ◽  
Vol 41 (3) ◽  
pp. 613-620 ◽  
Author(s):  
Takayoshi Higuchi ◽  
Stewart A. Brown

Sinapic acid-2-C14 is converted by 25-day-old wheat plants to sinapyl lignin 6 times as efficiently as to coniferyl lignin. This factor rises to 16 in heading wheat, indicating lessened ability to demethoxylate the sinapyl nucleus with increasing age. Feeding experiments with 3-(3,4-dihydroxy-5-methoxyphenyl)-acrylic acid (5-hydroxyferulic acid) provided evidence for the participation of this compound in the conversion of ferulic to sinapic acid. In plants at an early stage of lignification 5-hydroxyferulic acid was dehydroxylated to ferulic acid and was converted to coniferyl lignin, but evidence about the conversion of 5-hydroxyferulic acid to coniferyl lignin in more mature plants was conflicting. Demethylation of sinapic to 5-hydroxyferulic acid was demonstrated by means of a trapping experiment. Ferulic acid-2-C14 is reduced to coniferyl aldehyde and coniferyl alcohol in heading wheat plants and cambial tissue cultures of Pinus strobus.


1963 ◽  
Vol 41 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Takayoshi Higuchi ◽  
Stewart A. Brown

L-Phenylalanine-G-C14, p-hydroxycinnamic acid-2-C14, ferulic acid-2-C14, and sinapic acid-2-C14 were administered to wheat plants aged both 30 and 73 days. Radioactive vanilloyl- and syringoyl-methyl ketones were then recovered after ethanolysis of the cell wall residues. When corrected for differences in endogenous lignin, the C14 dilution values calculated for the younger plants were generally greater, indicating, as expected, a slower rate of lignification. The difference between the younger and older plants was less for sinapic and ferulic acids than for p-hydroxycinnamic acid or phenylalanine. This suggested that slower lignification in young plants may be due not to relative inactivity of an enzyme system at any one stage of the biosynthetic pathway but to the cumulative effect of slower reactions at several stages. Sinapic acid is converted in the younger plants to lignin yielding vanilloyl-, as well as syringoyl-, methyl ketone, suggesting a demethoxylation. Glucose esters of the radioactive phenolic cinnamic acids corresponding to the labelled compound administered were recovered from the plant extracts. A small percentage of the activity in the cell wall residue was in the form of ferulic acid joined by ester linkages.


1963 ◽  
Vol 41 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Takayoshi Higuchi ◽  
Stewart A. Brown

L-Phenylalanine-G-C14, p-hydroxycinnamic acid-2-C14, ferulic acid-2-C14, and sinapic acid-2-C14 were administered to wheat plants aged both 30 and 73 days. Radioactive vanilloyl- and syringoyl-methyl ketones were then recovered after ethanolysis of the cell wall residues. When corrected for differences in endogenous lignin, the C14 dilution values calculated for the younger plants were generally greater, indicating, as expected, a slower rate of lignification. The difference between the younger and older plants was less for sinapic and ferulic acids than for p-hydroxycinnamic acid or phenylalanine. This suggested that slower lignification in young plants may be due not to relative inactivity of an enzyme system at any one stage of the biosynthetic pathway but to the cumulative effect of slower reactions at several stages. Sinapic acid is converted in the younger plants to lignin yielding vanilloyl-, as well as syringoyl-, methyl ketone, suggesting a demethoxylation. Glucose esters of the radioactive phenolic cinnamic acids corresponding to the labelled compound administered were recovered from the plant extracts. A small percentage of the activity in the cell wall residue was in the form of ferulic acid joined by ester linkages.


1963 ◽  
Vol 41 (1) ◽  
pp. 613-620 ◽  
Author(s):  
Takayoshi Higuchi ◽  
Stewart A. Brown

Sinapic acid-2-C14 is converted by 25-day-old wheat plants to sinapyl lignin 6 times as efficiently as to coniferyl lignin. This factor rises to 16 in heading wheat, indicating lessened ability to demethoxylate the sinapyl nucleus with increasing age. Feeding experiments with 3-(3,4-dihydroxy-5-methoxyphenyl)-acrylic acid (5-hydroxyferulic acid) provided evidence for the participation of this compound in the conversion of ferulic to sinapic acid. In plants at an early stage of lignification 5-hydroxyferulic acid was dehydroxylated to ferulic acid and was converted to coniferyl lignin, but evidence about the conversion of 5-hydroxyferulic acid to coniferyl lignin in more mature plants was conflicting. Demethylation of sinapic to 5-hydroxyferulic acid was demonstrated by means of a trapping experiment. Ferulic acid-2-C14 is reduced to coniferyl aldehyde and coniferyl alcohol in heading wheat plants and cambial tissue cultures of Pinus strobus.


2019 ◽  
Vol 9 (20) ◽  
pp. 5572-5576 ◽  
Author(s):  
M. A. Stephanie Mertens ◽  
Daniel F. Sauer ◽  
Ulrich Markel ◽  
Johannes Schiffels ◽  
Jun Okuda ◽  
...  

We report a chemoenzymatic cascade reaction for stilbene production combining decarboxylation and olefin metathesis with efficient removal of metal contamination.


Sign in / Sign up

Export Citation Format

Share Document