Structural studies on cross-linked peptides containing lysinonorleucine from elastin of porcine aorta

1977 ◽  
Vol 55 (3) ◽  
pp. 244-248
Author(s):  
Maonique Davril ◽  
Kia-Ki Han

Three lysinonorleucine peptides were isolated from mature porcine aorta elastin after enzymic digestions and partial acid hydrolysis. The structural investigations which were performed suggest that different regions containing lysinonorleucine may exist. The role of this cross-link in mature elastin is discussed.

2006 ◽  
Vol 71 (1) ◽  
pp. 107-128 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Vahur Mäemets ◽  
Ilmar Koppel

The second-order rate constants k2 for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5 (X = H, 3-Cl, 3-NO2, 3-CH3, 4-NO2, 4-Cl, 4-F, 4-CH3, 4-OCH3, 4-NH2, 2-NO2, 2-CN, 2-F, 2-Cl, 2-Br, 2-I, 2-CH3, 2-OCH3, 2-CF3, 2-NH2), and of substituted phenyl esters of benzoic acid, C6H5CO2C6H4-X (X = 2-I, 2-CF3, 2-C(CH3)3, 4-Cl, 4-CH3, 4-OCH3, 4-NH2), have been measured spectrophotometrically in water at 25 °C. The substituent effect in alkaline hydrolysis of phenyl esters of para-substituted benzoic acids, similar to that for ethyl esters of para-substituted benzoic acids, was found to be precisely described by the Hammett relationship (ρ = 1.7 in water). The log k value for alkaline hydrolysis of phenyl and ethyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2R, was nicely correlated with log km,p,ortho = log ko + (ρ)m,pσ + (ρI)orthoσI + (ρ°R)orthoσ°R + δorthoEsB where σ, σI, σ°R are the Hammett polar, Taft inductive and Taft resonance (σ°R = σ° - σI) substituent constants, respectively. EsB is the steric scale for ortho substituents calculated on the basis of the log k values for the acid hydrolysis of ortho- substituted phenyl benzoates in water owing to the ortho substituent in the phenyl of phenyl benzoates. In water, the main factors responsible for changes in the ortho substituent effect in alkaline hydrolysis of phenyl and ethyl esters of ortho-substituted benzoic acids, X-C6H4CO2R, were found to be the inductive and steric factors while the role of the resonance term was negligible ((ρ°R)ortho ca. 0.3). In alkaline hydrolysis of substituted benzoates in neat water, the ortho inductive effect appeared to be 1.5 times and steric influence 2.7 times higher than the corresponding influences from the ortho position in the phenyl of phenyl benzoates. The contributions of the steric effects in alkaline hydrolysis of esters of ortho-substituted benzoic acids was found to be approximately the same as in acid hydrolysis of esters of ortho-substituted benzoic and acid esterification of ortho-substituted benzoic acids.


2021 ◽  
Author(s):  
Si Jie Lim ◽  
Mohd Shukuri Mohamad Ali ◽  
Suriana Sabri ◽  
Noor Dina Muhd Noor ◽  
Abu Bakar Salleh ◽  
...  

Abstract Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate due to candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade the enterocyte membrane components except for candidalysin, the VF acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only secreted aspartyl proteinases and agglutinin-like sequences have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans. Lay Abstract Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly candidiasis. Limited VFs’ structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.


2018 ◽  
Vol 74 (1) ◽  
pp. 41-51
Author(s):  
Kazuhiro Yamada ◽  
Markos Koutmos

Methyl transfer between methyltetrahydrofolate and corrinoid molecules is a key reaction in biology that is catalyzed by a number of enzymes in many prokaryotic and eukaryotic organisms. One classic example of such an enzyme is cobalamin-dependent methionine synthase (MS). MS is a large modular protein that utilizes an SN2-type mechanism to catalyze the chemically challenging methyl transfer from the tertiary amine (N5) of methyltetrahydrofolate to homocysteine in order to form methionine. Despite over half a century of study, many questions remain about how folate-dependent methyltransferases, and MS in particular, function. Here, the structure of the folate-binding (Fol) domain of MS fromThermus thermophilusis reported in the presence and absence of methyltetrahydrofolate. It is found that the methyltetrahydrofolate-binding environment is similar to those of previously described methyltransferases, highlighting the conserved role of this domain in binding, and perhaps activating, the methyltetrahydrofolate substrate. These structural studies further reveal a new distinct and uncharacterized topology in the C-terminal region of MS Fol domains. Furthermore, it is found that in contrast to the canonical TIM-barrel β8α8fold found in all other folate-binding domains, MS Fol domains exhibit a unique β8α7fold. It is posited that these structural differences are important for MS function.


Biochemistry ◽  
1974 ◽  
Vol 13 (11) ◽  
pp. 2347-2353 ◽  
Author(s):  
Ruth Sperling ◽  
Marian Gorecki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document