The polypeptide components of scintillons, the bioluminescence organelles of the dinoflagellate Gonyaulax polyedra

1993 ◽  
Vol 71 (3-4) ◽  
pp. 176-182 ◽  
Author(s):  
Michel Desjardins ◽  
David Morse

Scintillons, the bioluminescence organelles of Gonyaulax polyedra, were purified by isopycnic density gradient centrifugation until only low levels of contaminating chloroplasts and mitochondria were detected by fluorescence and electron microscopy. Purified scintillons catalyzed the luminescent reaction with kinetics identical to those observed during the bioluminescence flash in vivo. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the organelles appeared to contain only two proteins. These proteins were identified as luciferase (135 kilodaltons) and luciferin-binding protein (75 kilodaltons) based on their size and their known functions in the bioluminescence reaction in vitro. The staining of luciferin-binding protein by Coomassie blue was 2.4 ± 0.3 (n = 19) times greater than the luciferase, suggesting that there are four binding protein monomers for every luciferase monomer. A model is proposed for the close packing of the two proteins inside the scintillons.Key words: luciferase, luciferin-binding protein, density gradient centrifugation, dinoflagellate.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2283-2290 ◽  
Author(s):  
H Hoogendoorn ◽  
CH Toh ◽  
ME Nesheim ◽  
AR Giles

In previous studies using a nonhuman primate model of Protein C (PC) activation in vivo, immunoblotting showed substantial amounts of activated PC (APC) in a high molecular weight complex with what was presumed to be a previously unrecognized APC binding protein. This APC complex can also be formed in citrated plasma in vitro. It is of low electrophoretic mobility, sodium dodecyl sulfate (SDS) stable, with an apparent Mr of 320 Kd. Its purification from human plasma was accomplished using barium citrate adsorption, sequential polyethylene glycol (PEG) precipitations, diethylaminoethyl sepharose chromatography, AcA-34 gel filtration, and zinc-chelate affinity chromatography. This was monitored by subjecting the fractions to nondenaturing polyacrylamide gel electrophoresis (PAGE), transfer to polyvinylidene-difluoride membranes, and probing with 125I-labeled human APC. The purified APC-binding protein was homogeneous by SDS-PAGE with an Mr of 275 Kd. Its identity as alpha 2-macroglobulin (alpha 2M) was demonstrated immunochemically. Complex formation between alpha 2M and APC was found to be almost completely inhibited by EDTA, but to a lesser extent by citrate. Complex formation could also be prevented by active site inhibition with D-Phenylalanyl-L-Prolyl-L-Arginine- Chloromethyl Ketone (PPACK) or pretreatment of alpha 2M with methylamine. Incubation of APC (33 nmol/L) with alpha 2M (1 mumol/L) resulted in time-dependent inhibition of APC anticoagulant activity when measured using an activated partial thromboplastin time based APC assay. These data show that alpha 2M binds and inhibits APC in vitro and the interaction is both metal-ion and active-site dependent, requiring functionally intact alpha 2M. As the complexes formed in vitro comigrate electrophoretically with those observed in vivo after PC activation, it is suggested that alpha 2M is a physiologically relevant inhibitor involved in the processing of APC in vivo.



1981 ◽  
Vol 197 (1) ◽  
pp. 155-162 ◽  
Author(s):  
J P Pearson ◽  
A Allen ◽  
S Parry

The glycoprotein of pig gastric mucus has been isolated free of non-covalently bound protein as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and equilibrium density-gradient centrifugation. After reduction with 0.2 M-mercaptoethanol, protein was released from the glycoprotein, which consisted of a major 70000-mol.wt. component and a minor 60000-mol.wt. component. The 70000-mol.wt. protein fraction was separated from the reduced glycoprotein by either density-gradient centrifugation in CsCl or by gel filtration. Analysis of the 70000-mol.wt. protein fraction showed that, within the limits of the analysis, it was non-glycosylated, and its amino acid analysis was quite different from that of the reduced glycoprotein, which is high in serine, threonine and proline. There was a ratio of one 70000-mol.wt. protein per native glycoprotein molecule of 2 × 10(6) mol.wt. Dissociation of the native glycoprotein into glycoprotein subunits (5 × 10(5) mol.wt.) by reduction or proteolysis results in the release or hydrolysis respectively of the 70000-mol.wt. protein. A similar 70000-mol.wt. protein is demonstrated in human gastric mucus glycoprotein. A structural role for the proteins in these mucus glycoproteins is proposed.



1971 ◽  
Vol 123 (5) ◽  
pp. 967-975 ◽  
Author(s):  
D. Allan ◽  
M. J. Crumpton

The degree of solubilization of pig lymphocyte plasma membrane by sodium deoxycholate was determined at a variety of temperatures and detergent concentrations. Approx. 95% of the membrane protein was soluble in 2% deoxycholate at 23°C. Some of the biological activities of the membrane survived this treatment. The leucine β-naphthylamidase activity was more readily soluble than the 5′-nucleotidase and these enzymes could be separated by extraction with 0.5% deoxycholate at 0°C. Membrane solubilized in 2% deoxycholate at 23°C was fractionated by sucrose-density-gradient centrifugation in 1% deoxycholate. The phospholipid was separated from the protein, which formed a fairly symmetrical peak that sedimented slightly slower than ovalbumin; the leucine naphthylamidase and 5′-nucleotidase activities were resolved from each other and from the main protein peak. Similar separations were achieved by elution from Sephadex G-200 and Sepharose 6B in 1% deoxycholate. The main proteins, however, appeared to possess much higher molecular weights than those indicated by sucrose-density-gradient centrifugation. This disparity suggests that many of the membrane proteins have a rod-like shape, especially since the results of experiments with [14C]deoxycholate revealed that the proteins did not bind significant amounts of deoxycholate. In contrast, 5′-nucleotidase and leucine naphthylamidase appeared to be globular. Polyacrylamide-gel electrophoresis of membrane solubilized in sodium dodecyl sulphate gave a similar distribution of protein to that achieved by sucrose-density-gradient centrifugation. Trace amounts only of polypeptides of molecular weight less than 10000 were detected.



Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2283-2290 ◽  
Author(s):  
H Hoogendoorn ◽  
CH Toh ◽  
ME Nesheim ◽  
AR Giles

Abstract In previous studies using a nonhuman primate model of Protein C (PC) activation in vivo, immunoblotting showed substantial amounts of activated PC (APC) in a high molecular weight complex with what was presumed to be a previously unrecognized APC binding protein. This APC complex can also be formed in citrated plasma in vitro. It is of low electrophoretic mobility, sodium dodecyl sulfate (SDS) stable, with an apparent Mr of 320 Kd. Its purification from human plasma was accomplished using barium citrate adsorption, sequential polyethylene glycol (PEG) precipitations, diethylaminoethyl sepharose chromatography, AcA-34 gel filtration, and zinc-chelate affinity chromatography. This was monitored by subjecting the fractions to nondenaturing polyacrylamide gel electrophoresis (PAGE), transfer to polyvinylidene-difluoride membranes, and probing with 125I-labeled human APC. The purified APC-binding protein was homogeneous by SDS-PAGE with an Mr of 275 Kd. Its identity as alpha 2-macroglobulin (alpha 2M) was demonstrated immunochemically. Complex formation between alpha 2M and APC was found to be almost completely inhibited by EDTA, but to a lesser extent by citrate. Complex formation could also be prevented by active site inhibition with D-Phenylalanyl-L-Prolyl-L-Arginine- Chloromethyl Ketone (PPACK) or pretreatment of alpha 2M with methylamine. Incubation of APC (33 nmol/L) with alpha 2M (1 mumol/L) resulted in time-dependent inhibition of APC anticoagulant activity when measured using an activated partial thromboplastin time based APC assay. These data show that alpha 2M binds and inhibits APC in vitro and the interaction is both metal-ion and active-site dependent, requiring functionally intact alpha 2M. As the complexes formed in vitro comigrate electrophoretically with those observed in vivo after PC activation, it is suggested that alpha 2M is a physiologically relevant inhibitor involved in the processing of APC in vivo.



1979 ◽  
Author(s):  
M.A. Packham ◽  
J.F. Mustard ◽  
M.A. Guccione ◽  
P. D. Winocour ◽  
H.M. Groves ◽  
...  

Platelet survival CPS) is shortened in a number of conditions but the mechanisms responsible are unclear. In rabbits, removal of the aortic endothelium or injury of the neointima does not shorten PS. However, induction of thrombi in rabbit aortae with Indwelling cannulae (IDC) shortens FS (IDC 37.0 hr, control 79.6 hr), and Increases the proportion of platelets in the lightest fraction upon straetan density gradient centrifugation. Therefore we examined the effect of agents to which platelets may be exposed during thromboembolism (ADP, thrombin, plasmin) on PS and platelet density. ADP treatnent of washed rabbit platelets did not alter their survival but did increase the proportion in the lightest fraction. Treatment of platelets with thrombin did not shorten PS but increased the proportion in the lightest fraction. Treatment with plasmin in vitro shortened PS (plasmin, 57.6 ± 6.0 hr, control 80.2 ± 4,2 hr) and increased the proportion in the lightest fraction. Thus changes in platelet density are not necessarily associated with changes in PS. Of the factors investigated that are known to be involved in thromboembolism, only plasmin shortened PS. This may be due to its ability to alter major platelet membrane glycoproteins(principally glycoproteins I and II of rabbit platelets).



1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.



1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.



1973 ◽  
Vol 132 (3) ◽  
pp. 361-371 ◽  
Author(s):  
J. C. Pickup ◽  
C. I. Johnston ◽  
S. Nakamura ◽  
L. O. Uttenthal ◽  
D. B. Hope

Posterior pituitary lobes from young pigs were fractionated by differential and sucrose-density-gradient centrifugation. The distributions of oxytocin and [8-lysine]-vasopressin were measured by bioassay and the distributions of neurophysin-I and -II by radioimmunoassays specific for each of these two proteins. Most of the hormone and neurophysin applied to the density gradient was localized in particles with the density expected of neurosecretory granules. However, the neurosecretory granules were separated into two bands (D and E). A close statistical correlation between the distributions of [8-lysine]-vasopressin and neurophysin-I, and of oxytocin and neurophysin-II on the gradients, suggested that in vivo porcine neurophysin-I binds [8-lysine]-vasopressin within one population of granules and porcine neurophysin-II binds oxytocin within another type of granule. However, there was no significant separation of oxytocin and vasopressin in fractions D and E. The molar ratios of hormones and neurophysins indicated that there was insufficient of either neurophysin to bind the [8-lysine]-vasopressin in the granule fractions or in the whole gland. Polyacrylamide-gel electrophoresis showed that only bands corresponding in mobility to porcine neurophysins-I, -II and -III were present in large amounts in the whole gland and in the granule fractions. The component with the mobility of neurophysin-III was, however, relatively enriched in whole young glands and granule fractions compared with adult gland extracts. It is suggested that the vasopressin that cannot be assigned to neurophysin-I may occur in (a) vesicles containing vasopressin but no neurophysin, (b) vesicles containing vasopressin and a protein that cannot be quantified by the radioimmunoassays used, such as porcine neurophysin-III, or (c) normal vasopressin–neurophysin granules which have accumulated extra vasopressin. Band E of the gradient was rich in adenosine triphosphatase activity, whereas band D possessed very little of this enzyme.



1977 ◽  
Author(s):  
P. Cieslar ◽  
J.P. Greenberg ◽  
M.A. Packham ◽  
R.L. Kinlough-Rathbone ◽  
J.F. Mustard

Platelets degranulated by thrombin (TDP) can be recovered, are effective in hemostasis and survive normally upon infusion into rabbits. Two approaches to determine whether platelets have been degranulated in vivo are: (1) measurement of circulating released materials; (2) detection of circulating degranulated platelets. We have used arabino-galactan (Stractan II) density gradient centrifugation to separate normal and degranulated platelets. The following distribution was obtained with washed rabbit platelets.The serotonin, PF4 and adenine nucleotide contents of the TDP were less than those of normal platelets and the TDP in fraction I had the lowest amounts. When TDP were labeled with 51cr and mixed with equal numbers of normal platelets, 85% of the platelets in fraction I were found to be TDP. 51Cr-TDP were injected into normal rabbits and reharvested after 18 hours. The greatest proportion of TDP was isolated in fraction I. Thus this method may make it possible to separate platelets that have lost their granule contents during participation in reversible thrombus formation in vivo.(* Visiting Fellow from the Faculty of Medicine, Charles University, Prague, Czechoslovakia.)



Author(s):  
M Karunakaran ◽  
Vivek C Gajare ◽  
Ajoy Mandal ◽  
Mohan Mondal ◽  
S K Das ◽  
...  

This experiment was conducted to study the electrophoretic characters of heparin binding proteins (HBP) of Black Bengal buck semen and their correlation with sperm characters and cryo-survivability. Semen ejaculates (n=20/buck) were collected from nine bucks and in vitro sperm characters were evaluated at collection, after equilibration and after freeze - thawing. HBP were isolated through heparin column and discontinuous Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was performed to assess molecular weight. Significant difference (plessthan0.01) were observed among the bucks in sperm characters and freezability. Eight protein bands of 17 to 180 kDa in seminal plasma and 7 bands in sperm were found. 180 -136 kDa HBP of seminal plasma and 134-101 kDa HBP of sperm had showed high correlation with in vitro sperm characters. Further studies on identification of these proteins and their correlation with in vivo pregnancy are needed to find their role as marker for buck selection.



Sign in / Sign up

Export Citation Format

Share Document