platelet survival
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 3)

H-INDEX

40
(FIVE YEARS 1)

Blood ◽  
2020 ◽  
Vol 136 (15) ◽  
pp. 1773-1782 ◽  
Author(s):  
Daniel DeHelian ◽  
Shuchi Gupta ◽  
Jie Wu ◽  
Chelsea Thorsheim ◽  
Brian Estevez ◽  
...  

Abstract G protein–coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor–activating peptide, an increased maximum response to adenosine 5′-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10−/− platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18−/− mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18−/− and RGS10−/−18−/− mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.


2018 ◽  
Vol 150 (3) ◽  
pp. 267-272
Author(s):  
José C Jaime-Pérez ◽  
Karina E Vázquez-Hernández ◽  
Raúl A Jiménez-Castillo ◽  
Lucía T Fernández ◽  
Rosario Salazar-Riojas ◽  
...  

2018 ◽  
Vol 26 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Qi Ma ◽  
Chongzhuo Zhu ◽  
Weilin Zhang ◽  
Na Ta ◽  
Rong Zhang ◽  
...  

Transfusion ◽  
2016 ◽  
Vol 56 (6) ◽  
pp. 1370-1376 ◽  
Author(s):  
Julia Fuhrmann ◽  
Rabie Jouni ◽  
Jenny Alex ◽  
Heike Zöllner ◽  
Jan Wesche ◽  
...  

2016 ◽  
Vol 115 (02) ◽  
pp. 324-332 ◽  
Author(s):  
Rabie Jouni ◽  
Heike Zöllner ◽  
Ahmad Khadour ◽  
Jan Wesche ◽  
Anne Grotevendt ◽  
...  

SummaryProtamine (PRT) is the standard drug to neutralise heparin. PRT/heparin complexes induce an immune response similar to that observed in heparin-induced thrombocytopenia (HIT). Partially desulfated heparin (ODSH) was shown to interfere with anti-platelet factor 4/heparin antibodies (Abs), which are responsible for HIT. In this study, we analyse the impact of ODSH on the interaction between anti-PRT/heparin Abs and platelets. The ability of ODSH to prevent anti-PRT/heparin Ab-induced platelet destruction in vivo was investigated using the NOD/ SCID mouse model. ODSH improved platelet survival in the presence of PRT, heparin and anti-PRT/heparin Abs (median platelet survival after 300 minutes (min) with 20 μg/ml ODSH: 75 %, range 70–81 % vs without ODSH: 49%, range 44–59%, p=0.006). Furthermore, when ODSH was applied 60 min after Ab injection platelet survival was improved (median platelet survival after 300 min with ODSH: 83 %, range 77–93 % vs without ODSH: 59 %, range 29–61 %, p=0.02). In in vitro experiments ODSH inhibited platelet activation at concentrations > 16 μg/mL (p< 0.001), as well as PRT/heparin complex binding to platelets (mean fluorescence intensity [MFI] without ODSH: 85 ± 14 vs with ODSH: 15 ± 0.6, p=0.013). ODSH also displaced pre-bound complexes from the platelet surface (MFI without ODSH: 324 ± 43 vs with 32 μg/ml ODSH: 53 ± 9, p< 0.001). While interfering with platelet activation by anti-PRT/heparin Abs, up to a concentration of 16 μg/ml, ODSH had only minimal impact on neutralisation of heparin by PRT. In conclusion, our study shows that ODSH is able to inhibit platelet activation and destruction suggesting a potential clinical use to reduce anti-PRT/heparin Ab-mediated adverse effects.


Author(s):  
Amanda E. Au ◽  
Marion Lebois ◽  
Irina Pleines ◽  
Emma C. Josefsson
Keyword(s):  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 416-416 ◽  
Author(s):  
Irina Pleines ◽  
Marion Lebois ◽  
Amanda E.-L. Au ◽  
Rachael M. Lane ◽  
Katya J. Henley ◽  
...  

Abstract Platelet lifespan is limited to 10 days in humans and 5 days in mice. The intrinsic apoptosis pathway regulates the survival of platelets, where the pro-survival protein Bcl-xLrestrains the essential death mediators Bak and Bax (Mason et al., Cell 2007). Hence, platelet lifespan and platelet counts in mice are increased in the absence of Bak and Bak/Bax. While platelet production in mice is normal in the absence of intrinsic apoptosis (Josefsson et al., J Exp Med 2011), the function of these long-lived platelets has not been investigated. In the current study we examined the functional outcome of extended platelet survival. We found that washed platelets from mice with a constitutive deletion of Bak and a platelet-specific deletion of Bax (Bak-/-BaxPf4Δ/Pf4Δ) were fully resistant to apoptosis induced by the BH3-mimetic ABT-737, as demonstrated by lack of phosphatidylserine exposure (binding of AnnexinV) and unaltered mitochondrial membrane potential. Tail bleeding times into 37°C saline, were extended in the absence of either Bak alone or both Bak and Bax. Furthermore, the electrolytic thrombosis model showed that despite normal time to arterial occlusion, the thrombi formed in Bak-/- BaxPf4Δ/Pf4Δ mice were unstable, a trend also observed in Bak-/-Baxfl/fl mice. The formation of stable thrombi is dependent on the release of secondary agonists, such as ADP and Thromboxane, from activated platelets. To investigate potential defects in platelet signaling pathways in the absence of Bax and/or Bak, we performed in vitro platelet activation assays. Flow cytometric measurements revealed that activation of the PAR4 receptor (by PAR4-AP) or GPVI (by convulxin) led to reduced integrin activation (JON/A) and degranulation (P-selectin exposure) in the absence of Bak and Bak/Bax, while loss of Bax alone had no effect. In contrast, the response to activation with ADP, which does not induce granule release, was similar in platelets from all genotypes. Similarly, platelet aggregation in response to intermediate concentrations of PAR4-AP was severely reduced in the absence of Bak and Bak/Bax, but normal in response to ADP. We next investigated if abnormal degranulation in response to agonists could explain the aggregation defect. Platelet aggregation was performed with PAR4-AP and the platelet supernatants were collected after centrifugation. Dense granule release (ATP and serotonin) and alpha granule release (PF4) were significantly reduced from platelets deficient in Bak, Bak/Bax, but not Bax alone. Untreated resting platelets of all genotypes contained similar amount of granular proteins (ATP, serotonin and PF4). Hence, altered granule content was not the reason behind the abnormality. We next explored if platelet age was a factor behind the observed functional differences. To be able to directly compare platelet function in Bak/Bax deficient mice and wild-type controls, we synchronized platelet age to ~3 days in all genotypes. Platelets were depleted in vivo by injection of anti-platelet serum (APS). Newly generated platelets were collected at 72 h post injection, a time-point were platelet counts had returned to normal. Remarkably, synchronized platelet age normalized PAR4-AP and convulxin dependent integrin activation (JON/A) and degranulation (P-selectin exposure) in the absence of Bak and Bak/Bax to control levels. Similarly, the platelet aggregation and release defects were rescued. Lastly we investigated if synchronizing platelet age would revert the hemostatic defect of Bak/Bax mice in vivo. We determined tail bleeding times using mice, which were either untreated or depleted of platelets 72 h prior to the experiment. Strikingly, synchronization of platelet age to 3 days rescued the hemostatic defect in Bak-/-BaxPf4Δ/Pf4Δ mice. We conclude that extended platelet survival leads to platelet exhaustion, with reduced ability to mobilize granular release. Our studies suggest that, in the context of blood bank storage, extending platelet survival times by pharmacologically inhibiting apoptosis may result in a hemostatically compromised product. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document