Three-dimensional simulation of ice growth in the presence of antifreeze proteins

2003 ◽  
Vol 81 (1-2) ◽  
pp. 39-45 ◽  
Author(s):  
B Wathen ◽  
M J Kuiper ◽  
V K Walker ◽  
Z Jia

A Monte Carlo computational method for simulating the growth of entire ice crystals from the liquid phase has been developed specifically to study the inhibition of ice-crystal growth by antifreeze proteins (AFPs). AFPs are found in the fluids of certain organisms that inhabit freezing environments and constrain ice-crystal growth by adsorbtion to the ice surface, but their inhibition mechanism is still poorly understood. Thus, it was of interest to incorporate these molecules into the dynamic ice simulations to examine the inhibition phenomenon on a whole-crystal basis. We have undertaken simulations with AFPs from two different organisms that differ in activity; the insect AFP has up to 100 times the activity of the fish AFP on a molar basis. Simulations involving insect and fish AFPs have achieved ice-growth inhibition at simulation temperatures within reported activity ranges for both fish and insect AFPs, accompanied by resulting ice morphologies similar to those observed experimentally. These results, as well as other studies on ice-etching patterns and ice burst growth at temperatures below known AFP ice-growth inhibition abilities suggest that AFP activity is dominated by the AFP ice-binding position rather than AFP ice-binding strength. PACS No.: 07.05T

2020 ◽  
Author(s):  
Jinzi Deng ◽  
Elana Apfelbaum ◽  
Ran Drori

<p>Since some antifreeze proteins and glycoproteins (AF(G)Ps) cannot directly bind to all crystal planes, they change ice crystal morphology by minimizing the area of the crystal planes to which they cannot bind until crystal growth is halted. Previous studies found that growth along the <i>c</i>-axis (perpendicular to the basal plane, the crystal plane to which these AF(G)Ps cannot bind) is accelerated by some AF(G)Ps, while growth of other planes is inhibited. The effects of this growth acceleration on crystal morphology and on the thermal hysteresis activity are unknown to date. Understanding these effects will elucidate the mechanism of ice growth inhibition by AF(G)Ps. Using cold stages and an Infrared laser, ice growth velocities and crystal morphologies in AF(G)P solutions were measured. Three types of effects on growth velocity were found: concentration-dependent acceleration, concentration-independent acceleration, and concentration-dependent deceleration. Quantitative crystal morphology measurements in AF(G)P solutions demonstrated that adsorption rate of the proteins to ice plays a major role in determining the morphology of the bipyramidal crystal. These results demonstrate that faster adsorption rates generate bipyramidal crystals with diminished basal surfaces at higher temperatures compared to slower adsorption rates. The acceleration of growth along the <i>c</i>-axis generates crystals with smaller basal surfaces at higher temperatures leading to increased growth inhibition of the entire crystal.<a></a></p>


2020 ◽  
Author(s):  
Jinzi Deng ◽  
Elana Apfelbaum ◽  
Ran Drori

<p>Since some antifreeze proteins and glycoproteins (AF(G)Ps) cannot directly bind to all crystal planes, they change ice crystal morphology by minimizing the area of the crystal planes to which they cannot bind until crystal growth is halted. Previous studies found that growth along the <i>c</i>-axis (perpendicular to the basal plane, the crystal plane to which these AF(G)Ps cannot bind) is accelerated by some AF(G)Ps, while growth of other planes is inhibited. The effects of this growth acceleration on crystal morphology and on the thermal hysteresis activity are unknown to date. Understanding these effects will elucidate the mechanism of ice growth inhibition by AF(G)Ps. Using cold stages and an Infrared laser, ice growth velocities and crystal morphologies in AF(G)P solutions were measured. Three types of effects on growth velocity were found: concentration-dependent acceleration, concentration-independent acceleration, and concentration-dependent deceleration. Quantitative crystal morphology measurements in AF(G)P solutions demonstrated that adsorption rate of the proteins to ice plays a major role in determining the morphology of the bipyramidal crystal. These results demonstrate that faster adsorption rates generate bipyramidal crystals with diminished basal surfaces at higher temperatures compared to slower adsorption rates. The acceleration of growth along the <i>c</i>-axis generates crystals with smaller basal surfaces at higher temperatures leading to increased growth inhibition of the entire crystal.<a></a></p>


2020 ◽  
Vol 8 (44) ◽  
pp. 23555-23562
Author(s):  
Xing Liu ◽  
Hongya Geng ◽  
Nan Sheng ◽  
Jianjun Wang ◽  
Guosheng Shi

Design of biomimetic two-dimensional graphene derivatives to suppress ice crystal growth.


Author(s):  
Jun Jie Liu ◽  
Yangzong Qin ◽  
Maya Bar Dolev ◽  
Yeliz Celik ◽  
J. S. Wettlaufer ◽  
...  

The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth . Non-equilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries (‘lemon’ or ‘rice’ shapes). To analyse such shapes, we harness the underlying symmetry of hexagonal ice I h and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.


2000 ◽  
Vol 39 (Part 1, No. 2A) ◽  
pp. 372-377 ◽  
Author(s):  
Wei Wang ◽  
Masahito Watanabe ◽  
Taketoshi Hibiya ◽  
Takahiko Tanahashi

2018 ◽  
Vol 115 (29) ◽  
pp. 7479-7484 ◽  
Author(s):  
Maddalena Bayer-Giraldi ◽  
Gen Sazaki ◽  
Ken Nagashima ◽  
Sepp Kipfstuhl ◽  
Dmitry A. Vorontsov ◽  
...  

Ice-binding proteins (IBPs) affect ice crystal growth by attaching to crystal faces. We present the effects on the growth of an ice single crystal caused by an ice-binding protein from the sea ice microalga Fragilariopsis cylindrus (fcIBP) that is characterized by the widespread domain of unknown function 3494 (DUF3494) and known to cause a moderate freezing point depression (below 1 °C). By the application of interferometry, bright-field microscopy, and fluorescence microscopy, we observed that the fcIBP attaches to the basal faces of ice crystals, thereby inhibiting their growth in the c direction and resulting in an increase in the effective supercooling with increasing fcIBP concentration. In addition, we observed that the fcIBP attaches to prism faces and inhibits their growth. In the event that the effective supercooling is small and crystals are faceted, this process causes an emergence of prism faces and suppresses crystal growth in the a direction. When the effective supercooling is large and ice crystals have developed into a dendritic shape, the suppression of prism face growth results in thinner dendrite branches, and growth in the a direction is accelerated due to enhanced latent heat dissipation. Our observations clearly indicate that the fcIBP occupies a separate position in the classification of IBPs due to the fact that it suppresses the growth of basal faces, despite its moderate freezing point depression.


Sign in / Sign up

Export Citation Format

Share Document