thermal hysteresis
Recently Published Documents


TOTAL DOCUMENTS

725
(FIVE YEARS 134)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 29 ◽  
pp. 101199
Author(s):  
R. Wu ◽  
J.R. Guzman-Sepulveda ◽  
A.P. Kalra ◽  
J.A. Tuszynski ◽  
A. Dogariu

Magnetism ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 10-30
Author(s):  
Nickolaus M. Bruno ◽  
Matthew R. Phillips

An analytical approach for computing the coefficient of refrigeration performance (CRP) was described for materials that exhibited a giant inverse magnetocaloric effect (MCE), and their governing thermodynamics were reviewed. The approach defines the magnetic work input using thermodynamic relationships rather than isothermal magnetization data discretized from the literature. The CRP was computed for only cyclically reversible temperature and entropy changes in materials that exhibited thermal hysteresis by placing a limit on their operating temperature in a thermodynamic cycle. The analytical CRP serves to link meaningful material properties in first-order MCE refrigerants to their potential work and efficiency and can be employed as a metric to compare the behaviors of dissimilar alloy compositions or for materials design. We found that an optimum in the CRP may exist that depends on the applied field level and Clausius–Clapeyron (CC) slope. Moreover, through a large literature review of NiMn-based materials, we note that NiMn(In/Sn) alloys offer the most promising materials properties for applications within the bounds of the developed framework.


Author(s):  
Xin-Hua Zhao ◽  
Dong Shao ◽  
Jia-Tao Chen ◽  
De-Xuan Gan ◽  
Jiong Yang ◽  
...  

2022 ◽  
Vol 1213 (1) ◽  
pp. 012010
Author(s):  
G Swaminathan ◽  
V Sampath

Abstract This paper deals with how the magnitude of transformation strain changes on partial transformation cycling of an NiTi shape memory alloy. A near-equiatomic NiTi shape memory alloy was allowed to undergo partial thermal cycling keeping the stress constant at 100 MPa for various upper cycle temperatures (between austenite start and austenite finish), using a custom-built thermomechanical cycling test setup. The displacement and the temperature of the sample during cycling were measured using a LASER extensometer and an optical pyrometer, respectively. The test results show that the recovery strain and thermal hysteresis width decrease with increasing number of cycles during partial cycling. In addition, martensite start and martensite finish temperatures increase during the initial cycles, whereas austenite start and austenite finish temperatures decrease during the initial cycles, followed by their saturation.


2021 ◽  
Author(s):  
N. N. Wang ◽  
Y. H. Gu ◽  
M. A. McGuire ◽  
J. Q. Yan ◽  
L. F. Shi ◽  
...  

Abstract Recently, transition-metal-based kagome metals have aroused much research interest as a novel platform to explore exotic topological quantum phenomena. Here we report on the synthesis, structure, and physical properties of a bilayer kagome lattice compound V3Sb2. The polycrystalline V3Sb2 samples were synthesized by conventional solid-state-reaction method in a sealed quartz tube at temperatures below 850 ℃. Measurements of magnetic susceptibility and resistivity revealed consistently a density-wave-like transition at T dw ≈ 160 K with a large thermal hysteresis, even though some sample-dependent behaviors are observed presumably due to the different preparation conditions. Upon cooling through T dw, no strong anomaly in lattice parameters and no indication of symmetry lowering were detected in powder x-ray diffraction measurements. This transition can be suppressed completely by applying hydrostatic pressures of about 1.8 GPa, around which no sign of superconductivity is observed down to 1.5 K. Specific-heat measurements reveal a relatively large Sommerfeld coefficient γ = 18.5 mJ/mol-K2, confirming the metallic ground state with moderate electronic correlations. Density functional theory calculations indicate that V3Sb2 shows a non-trivial topological crystalline property. Thus, our study makes V3Sb2 a new candidate of metallic kagome compound to study the interplay between density-wave-order, nontrivial band topology, and possible superconductivity.


2021 ◽  
Vol 38 (12) ◽  
pp. 124401
Author(s):  
Guanying Xing ◽  
Weixian Zhao ◽  
Run Hu ◽  
Xiaobing Luo

Taking heat positively as the information carrier, thermotronics can exempt the long-lasting thermal issue of electronics fundamentally, yet has been faced with the challenging multiplexing integration of diverse functionalities. Here, we demonstrate a spatiotemporal modulation platform to achieve multiplexing thermotronics functionalities based on the thermal-hysteresis vanadium dioxide, including negative-differential thermal emission, thermal diode, thermal memristor, thermal transistor, and beyond. The physics behind the multiplexing thermotronics lies in the thermal hysteresis emission characteristics of the phase-changing vanadium dioxide during the spatiotemporal modulation. The present spatiotemporal modulation is expected to stimulate more exploration on novel functionalities, system integration, and practical applications of thermotronics.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5233
Author(s):  
Zhao Song ◽  
Zongbin Li ◽  
Bo Yang ◽  
Haile Yan ◽  
Claude Esling ◽  
...  

First-order isostructural magnetoelastic transition with large magnetization difference and controllable thermal hysteresis are highly desirable in the development of high-performance magnetocaloric materials used for energy-efficient and environmental-friendly magnetic refrigeration. Here, we demonstrate large magnetocaloric effect covering the temperature range from 325 K to 245 K in Laves phase Hf1-xTaxFe2 (x = 0.13, 0.14, 0.15, 0.16) alloys undergoing the magnetoelastic transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state on decreasing the temperature. It is shown that with the increase of Ta content, the nature of AFM to FM transition is gradually changed from second-order to first-order. Based on the direct measurements, large reversible adiabatic temperature change (ΔTad) values of 2.7 K and 3.4 K have been achieved under a low magnetic field change of 1.5 T in the Hf0.85Ta0.15Fe2 and Hf0.84Ta0.16Fe2 alloys with the first-order magnetoelastic transition, respectively. Such remarkable magnetocaloric response is attributed to the rather low thermal hysteresis upon the transition as these two alloys are close to intermediate composition point of second-order transition converting to first-order transition.


Sign in / Sign up

Export Citation Format

Share Document