Recent activities at the Tokyo EBIT 2006

2008 ◽  
Vol 86 (1) ◽  
pp. 315-319 ◽  
Author(s):  
N Nakamura ◽  
F J Currell ◽  
D Kato ◽  
A P Kavanagh ◽  
Y M Li ◽  
...  

The electron beam ion trap (EBIT) in Tokyo was constructed about 10 years after the first EBIT at Lawrence Livermore National Laboratory was built, and has been being stably operated since then. In this paper, we present recent experimental activities at the Tokyo EBIT. In particular, experiments utilizing slow, very highly charged ion beams extracted from the EBIT are reported. PACS Nos.: 39.10.+j, 32.30.Rj, 34.50.Dy, 34.80.Kw

2004 ◽  
Vol 82 (11) ◽  
pp. 931-942 ◽  
Author(s):  
P Neill ◽  
C Harris ◽  
A S Safronova ◽  
S Hamasha ◽  
S Hansen ◽  
...  

M-shell spectra of W ions have been produced at the Lawrence Livermore National Laboratory EBIT-II electron beam ion trap-II at different energies of the electron beam. A survey has been performed at 2.4, 2.8, and 3.6 keV, and for steps in energy of 100 eV over the 3.9–4.6 keV energy range. The analysis of 11 W spectra has shown the presence of a wide variety of ionization stages from Se-like to Cr-like W; the appearances of these ionization stages correlate well with the energy of their production. The present paper focuses on the identification of 63 experimental features of W ions in a spectral region from 5 to 6 Å (1 Å = 10–10 m) using calculations with inclusion of all ionization stages matching this spectral region. The majority of lines in all spectra have been identified and assigned to the 4f → 3d and 4d → 3p transitions. This is the first work that lists a comprehensive identification of so many resolved spectral features of X-ray M-shell transitions in W ions recorded in such detail in the laboratory. PACS Nos.: 52.58.Lq,32.30.Rj,52.70.La


2008 ◽  
Vol 86 (1) ◽  
pp. 231-240 ◽  
Author(s):  
F S Porter ◽  
B R Beck ◽  
P Beiersdorfer ◽  
K R Boyce ◽  
G V Brown ◽  
...  

NASA’s X-ray spectrometer (XRS) microcalorimeter instrument has been operating at the electron beam ion trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use and extremely high-performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be ~3.8 eV in the fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last six years, and prospects for future upgrades. Specifically, we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV and 2 eV at 6 keV with high counting rates. PACS Nos.: 52.25.Os, 52.70.La, 95.85.Nv, 32.30.Rj, 07.85.Fv, 78.70.En


1997 ◽  
Vol 68 (5) ◽  
pp. 1998-2002 ◽  
Author(s):  
L. P. Ratliff ◽  
E. W. Bell ◽  
D. C. Parks ◽  
A. I. Pikin ◽  
J. D. Gillaspy

Author(s):  
Yajing Li ◽  
Yintao Wang ◽  
Junyu Fan ◽  
Ran Si ◽  
Jiguang Li ◽  
...  

Abstract The 4s24p 2P3/2 – 2P1/2 magnetic dipole transition in Ga-like ions is interested in developing of high precise highly charged ion clock [Phys. Rev. A, 99, 02213(2019)]. In this work, we present direct observations of the transition in Mo11+ and Ru13+ ions at an electron beam ion trap. Internal and external calibration methods are used for determining the wavelength of the Mo11+ and Ru13+ lines, respectively. Both measurements reach precision levels of a few ppm. Compared with the available values, the current results significantly improve the experimental uncertainty.


2006 ◽  
Vol 77 (9) ◽  
pp. 093303 ◽  
Author(s):  
W. Meissl ◽  
M. C. Simon ◽  
J. R. Crespo López-Urrutia ◽  
H. Tawara ◽  
J. Ullrich ◽  
...  

2018 ◽  
Vol 89 (5) ◽  
pp. 052401 ◽  
Author(s):  
M. A. Blessenohl ◽  
S. Dobrodey ◽  
C. Warnecke ◽  
M. K. Rosner ◽  
L. Graham ◽  
...  

1996 ◽  
Vol 67 (11) ◽  
pp. 3818-3826 ◽  
Author(s):  
P. Beiersdorfer ◽  
L. Schweikhard ◽  
J. Crespo López‐Urrutia ◽  
K. Widmann

2011 ◽  
Vol 89 (5) ◽  
pp. 599-608 ◽  
Author(s):  
G.C. Osborne ◽  
A.S. Safronova ◽  
V.L. Kantsyrev ◽  
U.I. Safronova ◽  
P. Beiersdorfer ◽  
...  

Spectral tungsten data taken on an electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory are analyzed between 3 and 8 Å for electron beam energies between 2.5 and 4.1 keV. The advantage of using charge state balancing with the experimental EBIT spectra for the identification of lines is employed and discussed. Theoretical Hebrew University Lawrence Livermore Atomic Code (HULLAC) modeling is then benchmarked against the experimental EBIT results. In particular, Co-, Ni-, Zn-, Cu-, Ga-, and Ge-like transitions were modeled independently using HULLAC to aid in charge state balancing. This model is then compared with Z-pinch plasma data collected on Zebra, the 1.6 MA pulse power generator located in the Nevada Terawatt Facility at the University of Nevada, Reno. The model is used to calculate charge balance and average ionization levels of these experimental plasma results, with particular focus on planar tungsten arrays.


Sign in / Sign up

Export Citation Format

Share Document