ON THE ABSORPTION SPECTRUM OF H2O AND D2O IN THE VACUUM ULTRAVIOLET

1963 ◽  
Vol 41 (2) ◽  
pp. 209-219 ◽  
Author(s):  
J. W. C. Johns

The spectra of normal and heavy water vapor have been observed under high resolution in the region 1220–1240 Å. One band of H2O and two bands of D2O have been measured and analyzed. The spectra were taken in the ninth order of a 35-ft concave-grating spectrograph and the accuracy of measurement of the sharper lines is estimated to be about ± 0.005 Å. The results of the analyses are summarized below.[Formula: see text]These bands have been assigned as belonging to the first member of one of the two np Rydberg series.

1968 ◽  
Vol 46 (8) ◽  
pp. 987-1003 ◽  
Author(s):  
Ch. Jungen ◽  
E. Miescher

Heterogeneous perturbations 2E+ ~ 2Π of largely different magnitudes are observed with high resolution in the vacuum-ultraviolet absorption and in the infrared emission spectrum of the NO molecule. The rotational interactions between 2Σ+ Rydberg states and levels of the B2Π non-Rydberg state are shown to be "configurationally forbidden", but produced by the configuration interaction between the non-Rydberg levels and 2Π Rydberg states. The latter together with the 2Σ+ Rydberg states form p complexes. In this way the interactions display the l uncoupling in the complexes; they can be evaluated theoretically and can be analyzed fully. The cases of the strong interactions D2Σ+(v = 3) ~ B2Π(v = 16)and D2Σ+(v = 5) ~ B2Π(v = 21) and of the weaker D2Σ+(v = 1) ~ B2Π(v = 11), all three observed as perturbations in ε bands crossing 3 bands, are discussed in detail. It is further shown that perturbations between γ bands and β bands as well as perturbations between analogous bands of higher principal quantum number are absent, and thus the assignment of the A2Σ+ and E2Σ+ states to the s Rydberg series is confirmed.


1987 ◽  
Vol 7 (2-4) ◽  
pp. 129-139 ◽  
Author(s):  
Toshiaki Munakata ◽  
Tadahiko Mizukuki ◽  
Akira Misu ◽  
Motowo Tsukakoshi ◽  
Takahiro Kasuya

The photoionization spectrum of HBr around the first ionization limit was measured at resolution of up to 5 x 10−4 nm. The ionizing vacuum ultraviolet radiation was generated by frequency tripling of the second harmonic output of a dye laser. Three sets of Rydberg series, each converging to the ground state (2Π3/2) of HBr+, were observed on the longer wavelength side of the ionization limit. By extrapolation of the Rydberg series, the ionization potential of HBr was determined to be 11.666 ± 0.001 eV.


1977 ◽  
Vol 48 (2) ◽  
pp. 245-250 ◽  
Author(s):  
P. Gürtler ◽  
V. Saile ◽  
E.E. Koch

1976 ◽  
Vol 54 (20) ◽  
pp. 2074-2092 ◽  
Author(s):  
E. Miescher

The absorption spectrum of cold NO gas has been photographed at high resolution between 1400 and 1250 Å for two isotopic species. Resolved bands of the Rydberg series converging to vibrational levels of the 1Σ+ ground state of NO+ are studied. They include nf–X bands up to n = 15 and ns–X bands up to n = 11, all of which show sharp rotational structure. The higher members of the np–X series are generally very diffuse with only npσ being sufficiently sharp to show broadened rotational lines. Also mostly diffuse are the ndδ–X bands. The bands ndσ, π–X are not observed. The rapidly (n−3) narrowing structure of the nf complexes is discussed and the ionization energy [Formula: see text] accurately determined by extrapolation of selected rotational lines. Interactions between Rydberg states are numerous, s ~ d mixing produces a strong effect above n = 6 when (n + 1)s levels fuse with nl levels into 'supercomplexes'. Matrix elements are given for observed 8f ~ 9s and 6f ~ 6dδ interactions.Valence levels are not observed above the ionization energy, except for the repulsive state A′2Σ+ arising from the first dissociation limit and seemingly assuming Rydberg character at molecular internuclear distance. Observed anomalies are qualitatively discussed.


The absorption spectrum of Ag I between 550 Å and 1590 Å has been investigated by using synchrotron radiation as the source of continuum. Over 50 new transitions are reported, nearly all of which can be classified into Rydberg series due to excitation of one electron from the 4d subshell. Identifications are made by comparison with previous studies of the arc spectrum as well as with absorption spectra of related elements. Ab initio Hartree-Fock calculations have revealed the importance of treating 5s 5p 1 P based levels by a separate variational method. Doubly excited configurations are also found, but, in contrast to a previous theoretical prediction, double vacancy production within the 4d subshell is not found to be significant for Ag I.


The Sr I absorption spectrum between 300 and 800Å|| has been photographed, and nearly 200 new lines have been revealed. Two methods are used to analyse the spectrum. First, comparison with multiconfiguration Hartree-Fock calculations is used to identify first series members and, secondly, simplified Lu-Fano plots are used to order other lines into Rydberg series. Identifications are also provided for many lines of the Sr 4p-subshell ejected-electron spectrum, excited by electron impact (White et al. 1979). In particular eighteen SrII levels are identified.


1978 ◽  
Vol 56 (7) ◽  
pp. 962-973 ◽  
Author(s):  
Yumio Morioka ◽  
Harunobu Masuko ◽  
Masatoshi Nakamura ◽  
Michio Sasanuma ◽  
Eiji Ishiguro

The absorption coefficients of NO2 in the region from 500 to 1100 Å are measured by a photographic method using the radiation from electron synchrotron as a background source. For the Rydberg series due to the transition from 4a1 to npπ, parameters q and Γ in Mies equation are obtained and the parameter q is determined to be −0.4 for every member and Γ 4.808/n*3 eV where n* is the effective quantum number.The absorption spectrum of NO2 in the region from 600 to 1600 Å are also analyzed. New vibrational progressions that are observed around 950 Å, are assigned to the excitations from 4b2 to ns Rydberg states (n = 3, 4, and 5) converging to the 1B2 ionic state. Assignments and discussions of many other Rydberg series that appear in the absorption spectrum between 600 and 1600 Å are also presented.


2014 ◽  
Vol 141 (19) ◽  
pp. 194301 ◽  
Author(s):  
Patrick P. Hughes ◽  
Amy Beasten ◽  
Jacob C. McComb ◽  
Michael A. Coplan ◽  
Mohamad Al-Sheikhly ◽  
...  

1966 ◽  
Vol 44 (7) ◽  
pp. 1583-1592 ◽  
Author(s):  
F. Creutzberg

The absorption spectrum of P2 has been photographed at high resolution down to 1 220 Å. Eight band systems have been analyzed, including two that were first observed by Dressier. Four of the excited states are identified as [Formula: see text] states and four as 1Πu states. Rotational and vibrational constants are given for the excited states, including improved constants for the previously known lowest excited [Formula: see text] state.


Sign in / Sign up

Export Citation Format

Share Document