The absorption spectrum of Ag I in the vacuum ultraviolet

The absorption spectrum of Ag I between 550 Å and 1590 Å has been investigated by using synchrotron radiation as the source of continuum. Over 50 new transitions are reported, nearly all of which can be classified into Rydberg series due to excitation of one electron from the 4d subshell. Identifications are made by comparison with previous studies of the arc spectrum as well as with absorption spectra of related elements. Ab initio Hartree-Fock calculations have revealed the importance of treating 5s 5p 1 P based levels by a separate variational method. Doubly excited configurations are also found, but, in contrast to a previous theoretical prediction, double vacancy production within the 4d subshell is not found to be significant for Ag I.

The absorption spectrum of Mg I vapour between 2000 and 700 ņ has been reinvestigated, using the continuum emitted by the Bonn 500 MeV electron synchrotron as the source of background radiation. Extensions to the double excitation spectrum of the valence shell have resulted and are compared with recent data obtained by electron impact spectroscopy. Ab initio calculations of the doubly excited configurations have been extended to high series members, and the transition from LS to jj coupling is shown to be responsible for the appearance of a 1 S 0 - 3 P 1 series not previously detected by photoabsorption.


The Sr I absorption spectrum between 300 and 800Å|| has been photographed, and nearly 200 new lines have been revealed. Two methods are used to analyse the spectrum. First, comparison with multiconfiguration Hartree-Fock calculations is used to identify first series members and, secondly, simplified Lu-Fano plots are used to order other lines into Rydberg series. Identifications are also provided for many lines of the Sr 4p-subshell ejected-electron spectrum, excited by electron impact (White et al. 1979). In particular eighteen SrII levels are identified.


The 3d and 4s photoabsorption spectra of Cr I have been observed by using the synchrotron radiation emitted by the Bonn 500 MeV electron accelerator as the source of background continuum. The resulting spectrum is unexpectedly simple, and this is explained within the spectator electrons approximation. The more intense transitions can be arranged in Rydberg series. A prominent series of transmission windows arises by double excitation. A detailed analysis is presented, supported by some ab initio Hartree-Fock calculations and also by comparison with the semi-empirical calculations of Roth (1970) which include mixing between all the (3d + 4s) 5 4p configurations.


The K I absorption spectrum has been photographed in the range 700–350 Å, revealing at least 140 new features. Comparisons with Hartree–Fock calculations are used for interpretation. All observed features can be attributed to excitation of the 3p-subshell and an assignment–often tentative–is given to nearly every observed feature.


2003 ◽  
Vol 81 (12) ◽  
pp. 1419-1425 ◽  
Author(s):  
X -L Wu ◽  
B -C Gou ◽  
F Wang

Energies and fine-structure corrections for the doubly excited 3Pe and 3De states of the helium atom are calculated using the Rayleigh–Ritz variational method and the saddle-point variational method with a multiconfiguration-interaction function. The relativistic and mass polarization corrections are included. The oscillator strengths, transition rates, and wavelengths are also calculated. The doubly excited states are grouped into Rydberg series labeled by the quantum numbers K, T, and A to display the systematic regularity along the series. The results are compared with the theoretical and experimental data in the literature. PACS Nos.: 31.15.Pf, 31.25.Jf, 32.70.Cs


New observations of the absorption spectrum of Mn I between 1800 and 700 Å have revealed 77 new transitions, arrangeable in Rydberg series converging on to experimentally known levels of the ion. The analysis of the spectrum at wavelengths shorter than 1300 Å suggests assignments for several previously unidentified transitions in the 1300-1600 Å range. Comparisons with ah initio Hartree-Fock calculations are attempted, and the spectator electrons model is shown to provide the correct framework for the analysis of 3d and 4s excitation in Mn I.


1968 ◽  
Vol 46 (8) ◽  
pp. 987-1003 ◽  
Author(s):  
Ch. Jungen ◽  
E. Miescher

Heterogeneous perturbations 2E+ ~ 2Π of largely different magnitudes are observed with high resolution in the vacuum-ultraviolet absorption and in the infrared emission spectrum of the NO molecule. The rotational interactions between 2Σ+ Rydberg states and levels of the B2Π non-Rydberg state are shown to be "configurationally forbidden", but produced by the configuration interaction between the non-Rydberg levels and 2Π Rydberg states. The latter together with the 2Σ+ Rydberg states form p complexes. In this way the interactions display the l uncoupling in the complexes; they can be evaluated theoretically and can be analyzed fully. The cases of the strong interactions D2Σ+(v = 3) ~ B2Π(v = 16)and D2Σ+(v = 5) ~ B2Π(v = 21) and of the weaker D2Σ+(v = 1) ~ B2Π(v = 11), all three observed as perturbations in ε bands crossing 3 bands, are discussed in detail. It is further shown that perturbations between γ bands and β bands as well as perturbations between analogous bands of higher principal quantum number are absent, and thus the assignment of the A2Σ+ and E2Σ+ states to the s Rydberg series is confirmed.


1976 ◽  
Vol 54 (5) ◽  
pp. 525-567 ◽  
Author(s):  
I. Dabrowski ◽  
G. Herzberg

The absorption spectrum of HD has been studied under high resolution in the vacuum ultraviolet to 840 Å, the emission spectrum to 1000 Å. The analysis of the latter gives accurate rotational constants and vibrational intervals of the ground state right up to the dissociation limit. Comparing these experimental data with calculations from ab initio theory, agreement to the same extent as was previously found for H2 and D2 is obtained. Extrapolation of the obs. – calc. values from H2 and D2 to infinite mass yields agreement with the recently revised theoretical values to within less than 0.1 for v < 7 and less than 0.5 cm−1 for the whole range of observed v values. The deviations for finite mass (H2 and D2) are clearly due to the non-adiabatic corrections neglected in the ab initio calculations. The results for HD are not halfway between H2 and D2 but are closer to H2. This apparent anomaly can be quantitatively accounted for, on the basis of recent calculations of Wolniewicz, by the effect of additional nonadiabatic corrections caused by the excited Σu states which in HD, unlike H2 and D2, can interact with the ground state.The rotational and vibrational constants of the excited states B1Σu+, C1Πu, and B′1Σu+ show somewhat larger deviations from ab initio values ranging for v0v from 5 to 120 cm−1, just as for H2 and D2. The electronic isotope shift of HD lies approximately half-way between the values of H2 and D2 as expected. In addition to the B–X, C–X, and B′–X systems the absorption spectrum of HD, unlike that of H2 and D2, shows an extensive progression of weak transitions to the double minimum state EF1Σg+ and a few very weak transitions to the G1Σg+ and I1Πg states. For the EF state both levels in the outer minimum (F) and levels above the maximum are observed. The correlation of the six excited states B, C, B′, EF, G, and I to the two close-lying dissociation limits corresponding to H + D* and H* + D is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document