Improved Spectroscopic Data Synthesis for I2(B3ΠOu+) and Predictions of J Dependence for B(3ΠOu+)–X(1Σg+) Transition Intensities

1973 ◽  
Vol 51 (15) ◽  
pp. 1664-1677 ◽  
Author(s):  
J. David Brown ◽  
George Burns ◽  
Robert J. Le Roy

Some new techniques are introduced in a reanalysis of the spectroscopic data for I2(B3ΠOu+)to obtain a more complete and internally consistent set of molecular constants, and an RKR potential curve. In particular, attention is focussed on the determination of reliable high-order rotational constants (Dν, Hν, etc.) for highly excited vibrational levels. The ensuing intermolecular potential for this state is then used together with a known ground-state curve in a study of the J dependence of Franck-Condon factors for discrete B(3ΠOu+)–X(1Σg+) transitions over a wide range of ν and J. It is concluded that at the temperatures 1000–2000 °K routinely achieved in shock-tube experiments, the intensity of most vibrational bands will vary drastically as J ranges across the half-width of the thermal rotational population distribution.

1984 ◽  
Vol 39 (1) ◽  
pp. 27-31 ◽  
Author(s):  
A. Bernard ◽  
R. Gravina

This paper deals with the extension of a recent study of the infrared 1Π → 1Σ emission system of the YI molecule (1). Thanks to the extreme regularity of the structure, rotational analyses can be completed for the previous 3-1, 2-0, 1-0, 0-0 and 0-1 bands and extended to 11 more bands detected step by step from their synthetic spectra (owing to the extremely dense structure). A unique and consistent set of accurate rotational constants is derived for both states, up to the levels υ" = 7 and υ' = 4, from the reduction of 5772 line wavenumbers in the bands 3-1, 2-0, 1-0, 0-0. 0-1. 0-2, 1-3, 2-4, 2-5, 3-6 and 4-7, the υ-connected bands being fitted simultaneously. The 57 estimated constants allow to reproduce the observed spectra with typical weighted rms errors between 4 and 5 mK. When using these constants to generate the bands 2-1, 1-2, 3-3, 1-4 and 3-5, ~1300 lines can be picked out whose experimental positions relatively to the predicted ones correspond to quite equivalent rms errors with nearly normal distributions of the residuals, therefore ensuring the reliability of the analysis. Molecular constants at equilibrium are derived; improvments are significant, particularly for vibration. Franck-Condon factors and r-centroïds appropriate to RKR potential curves are given. The observed bands correspond to those which are predicted to be the strongest ones in each υ'-progression.


1990 ◽  
Vol 45 (6) ◽  
pp. 795-798 ◽  
Author(s):  
O. Babaky ◽  
K. Hussein

AbstractA study of the spin-orbit interaction between the A1Σu+ and b3Πu states of Na2 , based on the collision-induced transitions (2) 1Σ g →A1Σu+ recorded with a high resolution Fourier transform spectrometer, had led to the determination of the deperturbed constants of the A1Σu+ and b3Πu states [1]. From these constants the Rydberg-Klein-Rees (RKR) potential curves for the A1Σu+ (0≦v≦ 15) and b3Πu (0 ≦ v ≦ 25) states and the Franck-Condon factors (FCF) within the range of vibrational levels involved in the interaction of these two states are calculated, together with the mixing coefficients for the pair (A1Σu+)v=4 - (b3Πu)v=10.


2001 ◽  
Vol 79 (2-3) ◽  
pp. 299-343 ◽  
Author(s):  
T Hirao ◽  
P F Bernath

The A1Π – X1Σ+ and B1Σ+ – X1Σ+ transitions of copper monobromide, CuBr, were recorded with a Fourier transform spectrometer. The emission was generated by using a hollow cathode discharge of Ar buffer gas and a mixture of Cu and CuBr powders. The mass-dependent Dunham expansion formula was used to obtain improved molecular constants for the ground, A and B states. These molecular constants provided RKR potential curves and Franck–Condon factors for the A–X and B–X transitions.PACS No. 35.80 transitions. PACS No. 35.80


1967 ◽  
Vol 22 (5) ◽  
pp. 705-710 ◽  
Author(s):  
Reimar Spohr ◽  
Ewald Von Puttkamer

The energy of photoelectrons ejected by 21.21 eV quanta of the He resonance line is measured with a retarding potential method at a resolution of 40 meV. Vibrational structure of the molecular ions H2+, D2+, O2+, N2+, NO+, CO2+, N2O+ H20, and HC ≡ CH+ is resolved and experimental values of the FRANCK-CONDON factors for the transitions into these vibrational levels are given.


Author(s):  
Sefa Celik ◽  
Ali Tugrul Albayrak ◽  
Sevim Akyuz ◽  
Aysen E. Ozel

FTIR and Raman spectroscopy are complementary spectroscopic techniques that play an important role in the analysis of molecular structure and the determination of characteristic vibrational bands. Vibrational spectroscopy has a wide range of applications including mainly in physics and biology. Its applications have gained tremendous speed in the field of biological macromolecules and biological systems, such as tissue, blood, and cells. However, the vibrational spectra obtained from the biological systems contain a large number of data and information that make the interpretation difficult. To facilitate the analysis, multivariant analysis comprising the reduction of the dimension of spectrum data and classification of them by eliminating redundancy data, which are obtained from the spectra and does not have any role, becomes critical. In this chapter, the applications of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and their combination PCA-LDA, which are widely used among multivariant techniques on biological systems will be disclosed.


1976 ◽  
Vol 54 (15) ◽  
pp. 1535-1544 ◽  
Author(s):  
K. V. Subbaram ◽  
J. A. Coxon ◽  
W. E. Jones

Rotational analyses have been performed for the 1–0, 0–0, 0–1, 0–2, 0–3, and 0–4 bands of the A2Πr–X2Σ+ system of BeAr+ near 4000 Å. Molecular constants have been obtained by direct least squares fits of the line frequencies to model Hamiltonians. The Λ-type doubling in the A state is compared with that found for other nine valence-electron systems. RKR curves are calculated for both states, and provide an estimate of Dc″ = 4100 ± 200 cm−1 for the X2Σ+ state. Franck–Condon factors and r-centroids for the transition are also reported.


2010 ◽  
Vol 75 (5) ◽  
pp. 659-667 ◽  
Author(s):  
Ankica Antic-Jovanovic ◽  
Milos Momcilovic ◽  
Vojislav Bojovic ◽  
Murtadha Khakoo ◽  
Russ Laher

Potential curves for the X1?g+ and D1?u+ states of three diatomic silver isotopomers, 107Ag2, 107Ag109Ag and 109Ag2, were determined from the best available molecular constants by the Rydberg-Klein-Rees method. From these potentials, Franck-Condon factors and band-origin wave numbers were computed, and the reliability of the obtained values was verified by comparison with the observed band strength distribution and the measured band origin positions in a previously recorded D-X spectrum. The ratios of the Franck-Condon factors to those of corresponding isotopic bands were found to be very close to unity, revealing only a very small isotopic effect on the Franck Condon factors of Ag2 D-X bands. The isotopic shifts of the calculated band origins agree well with previously measured displacements of band heads.


Sign in / Sign up

Export Citation Format

Share Document