Sensitized Fluorescence in Cadmium Induced in Collisions with Excited Hg Atoms

1974 ◽  
Vol 52 (22) ◽  
pp. 2228-2234 ◽  
Author(s):  
M. Czajkowski ◽  
L. Krause

The transfer of excitation energy induced in inelastic collisions between excited Hg atoms and ground-state Cd atoms was studied using methods of sensitized fluorescence. Hg atoms in a low-density Hg–Cd vapor mixture were excited with Hg 2537 Å resonance radiation to the 63P1 state and interacted with the Cd atoms which became collisionally excited to the 53P1 state and subsequently decayed emitting sensitized fluorescence. Measurements of relative intensities of Hg 2537 Å resonance fluorescence and Cd 3261 Å sensitized fluorescence yielded the cross section Q(63P1 → 53P1) = 4.6 × 10−2 Å2. The efficiency of the excitation transfer was enhanced by the addition of small quantities of N2 to the Hg–Cd system. The cross section for quenching of the Cd 53P1 state by collisions with N2 was found to be 1.7 Å2.

1976 ◽  
Vol 54 (5) ◽  
pp. 603-610 ◽  
Author(s):  
M. Czajkowski ◽  
L. Krause

The transfer of excitation energy, induced in inelastic collisions between excited Hg atoms and ground state Zn atoms, was studied using methods of sensitized fluorescence. Hg atoms in a low density Hg–Zn mixture were excited with Hg 2537 Å resonance radiation to the 63P1 state, and interacted with the Zn atoms which became collisionally excited to the 43P1 state and then decayed emitting sensitized fluorescence. Measurements of relative intensities of Hg 2537 Å resonance fluorescence and Zn 3076 Å sensitized fluorescence yielded the cross section of 5.9 × 10−2 Å2 for Hg(63P1) → Zn(43P1) excitation transfer. The addition of small quantities of N2 to the Hg–Zn vapor mixture enhanced the efficiency of the transfer. The cross section for quenching of the Zn 43P1 state by collisions with N2 was found to be 0.19 Å2.


1978 ◽  
Vol 56 (7) ◽  
pp. 891-896 ◽  
Author(s):  
M. K. Wade ◽  
M. Czajkowski ◽  
L. Krause

The transfer of excitation from excited mercury atoms to ground-state thallium atoms was investigated using techniques of sensitized fluorescence. A Hg–Tl vapor mixture contained in a quartz cell was irradiated with Hg 2537 Å resonance radiation which caused the mercury atoms to become excited to the 63P1, state. Subsequent collisions between the Hg(63P1) and Tl(62P1/2) atoms resulted in the population of the 82S1/2, 62D, and 72S1/2 thallium states, whose decay gave rise to sensitized fluorescence of wavelengths 3231, 3520, 3776, and 5352 Å. Intensity measurements on the sensitized fluorescence and on the Hg 2537 Å resonance fluorescence, observed at right angles to the direction of excitation, yielded cross sections of 3.0, 0.3, and 0.05 Å2 for collisional excitation transfer from Hg(63P1) to the 82S1/2, 62D, and 72S1/2 states in thallium, respectively. The results are fully consistent with previously determined cross sections for excitation transfer in other binary metallic vapor systems.


1973 ◽  
Vol 51 (3) ◽  
pp. 334-342 ◽  
Author(s):  
M. Czajkowski ◽  
G. Skardis ◽  
L. Krause

Collisional transfer of excitation from mercury to sodium was investigated using methods of sensitized fluorescence. A mixture of mercury and sodium vapors at low pressure was irradiated with Hg 2537 Å resonance radiation, producing a population of Hg(63P1) atoms whose inelastic collisions with ground-state sodium atoms resulted in a transfer of excitation energy to close-lying S, P, and D states in sodium. The subsequent decay of these states manifested itself in the emission of a sensitized fluorescent spectrum. Absolute intensity measurements on the components of the spectrum yielded 21 cross sections whose magnitudes range from 0.02 to 38.5 Å2 and which exhibit a pronounced resonance with ΔE, the energy defect between Hg (63P1) and the appropriate level in sodium.


1968 ◽  
Vol 46 (19) ◽  
pp. 2127-2131 ◽  
Author(s):  
M. Stupavsky ◽  
L. Krause

3 2P1/2 ↔ 3 2P3/2 excitation transfer in sodium, induced in inelastic collisions with ground-state N2, H2, HD, and D2 molecules, has been investigated in a series of sensitized fluorescence experiments. Mixtures of sodium vapor at a pressure of 5 × 10−7 Torr, and the gases, were irradiated with each NaD component in turn, and the fluorescence which contained both D components was monitored at right angles to the direction of the exciting beam. Measurements of the relative intensities of the NaD fluorescent components yielded the following collision cross sections for excitation transfer. For Na–N2 collisions: Q12(2P1/2 → P3/2) = 144 Å2, Q21(2P1,2 ← 2P3/2) = 76 Å2 for Na–H2 collisions: Q12 = 80 Å2, Q21 = 42 Å2. For Na–HD collisions: Q12 = 84 Å2, Q21 = 44 Å2. For Na–D2 collisions: Q12 = 98 Å2, Q21 = 52 Å2. The cross sections Q21 exhibit a slight resonance effect between the atomic and molecular rotational transitions.


1979 ◽  
Vol 57 (20) ◽  
pp. 2716-2726 ◽  
Author(s):  
Toshinori Wada ◽  
Gordon R. Freeman

The density normalized mobilities μn at low electric field strengths in the low density gases fall in the order trans-2- > cis-2- > 1- > isobutene. The respective values in the saturated vapors at 297 ± 1 K were 10.7, 4.4, 3.8, and 1.84 (1022 molecules/cm V s). The scattering cross section σv has a Ramsauer–Townsend-like minimum at an electron energy of 0.085 eV in trans-2-butene, 0.13 eV in cis-2-butene, 0.12 eV in 1-butene, and 0.16 eV in isobutene. The mobilities in the last three isomers increase with increasing temperature (300–500 K) and field strength [Formula: see text]. Temperature and field effects were smaller in trans-2-butene. The ratio of the field effect threshold drift velocity to the speed of sound in the low density gas is 14, 19, 20, and > 50 in iso-, 1-, cis-2-, and trans-2-butene, respectively, at 297 K. The electrons are de-energized mainly by inelastic collisions. Quasilocalization occurs to a similar extent in each of the isomers at densities [Formula: see text] and temperatures near the coexistence curve. Quasilocalization is characterized by large, negative values of ΔH and ΔS, and a small value of ΔG over a small temperature range.


1966 ◽  
Vol 44 (4) ◽  
pp. 753-768 ◽  
Author(s):  
G. D. Chapman ◽  
L. Krause

Sensitized fluorescence in potassium vapor and its mixtures with inert gases was investigated in order to determine cross sections for the inelastic collisions leading to excitation transfer between the 4 2P1/2 and 4 2P3/2 states in potassium. The study was carried out at potassium vapor pressures of about 10−6 mm Hg, which were not formerly accessible to such experiments, and in the absence of radiation trapping. The cross sections Q1(4 2P1/2 → 42P3/2) and Q2(4 2P1/2 → 4 2P3/2) are as follows: for K–K collisions: 370 and 250 Å2; for K–He: 60 and 41 Å2; for K–Ne: 14 and 9.5 Å2; for K–A: 37 and 22 Å2; for K–Kr: 61 and 41 Å2; for K–Xe: 104 and 72 Å2. These values supersede those published previously (Chapman, Krause, and Brockman 1964; Chapman and Krause 1965). The cross sections for collisions between potassium and inert gas atoms do not increase monotonically with the polarizabilities of the inert gases but behave similarly to the electron – inert gas elastic scattering cross sections. This behavior is interpreted on the basis of a semiclassical model for the interaction, which involves overlap forces.


Author(s):  
Manel Hariz Belgacem ◽  
Elhabib Guedda ◽  
Haikel Jelassi

<sub></sub> In this paper we present our calculation of the cross section ionization by electron impact of C V, N VI and O VII. Using the Flexible Atomic Code (FAC), we obtain the cross sections for the ionization of these ions from the ground state 1<sup>1</sup>S, and from the unstable states 2<sup>1</sup>S and 2<sup>3</sup>S. Our results are in good agreement with those based on the Coulomb Born (CB) approximation and the available measurements.


1973 ◽  
Vol 26 (5) ◽  
pp. 585 ◽  
Author(s):  
RS Hicks ◽  
BM Spicer

The cross section for photoneutron production in 181Ta has been measured from threshold to 28� 8 MeV using bremsstrahlung and direct neutron detection. Integrated between these limits, the absolute value of the cross section has been determined to be 2 '47 �O' 35 MeV. b. An examination of the cross section variation with excitation energy reveals the existence of the giant quadrupole resonance lying on the high excitation edge of the dipole peak. This provides additional evidence for the validity of the dynamic collective model. The present data do not support the existence of extensive fine structure below 17 MeV, as proposed by Ishkhanov et al. (1969).


Sign in / Sign up

Export Citation Format

Share Document