The emission spectrum of SiN

1976 ◽  
Vol 54 (6) ◽  
pp. 680-688 ◽  
Author(s):  
H. Bredohl ◽  
I. Dubois ◽  
Y. Houbrechts ◽  
M. Singh

The emission spectrum of SiN has been reinvestigated under high resolution in the spectral region 3100–5600 Å. Besides the well known B2Σ+–X2Σ+, three new transitions have been analyzed, two 2Π–2Π and one 2Σ–2Π. These three transitions have a lower 2Π state in common which appears to be the lowest excited A2Π state. The B2Σ+–X2Σ+ transition has been reinvestigated and rotational perturbations have been found. The constants determined for the various electronic states are given.


1981 ◽  
Vol 59 (11) ◽  
pp. 1640-1652 ◽  
Author(s):  
S. N. Ghosh ◽  
R. D. Verma ◽  
J. VanderLinde

The emission spectrum of PN has been rephotographed at high resolution in the spectral region 2200 to 3100 Å. The bands analyzed involve ν′ = 0–10 to ν″ = 0–11 transitions of the A1Π–X1Σ+ system of which only a few of the strongest bands have previously been reported at low and medium resolution. From a rotational analysis of the spectrum, new perturbations in the ν′ = 0, 2, 3, and 7 levels of they'll have been observed. A deperturbation study of these levels as well as a previously reported perturbation in the ν′ = 1 identify the perturbing states as 3Δ perturbing A1Π, ν = 0 and 3Σ− perturbing A1Π, ν = 2 and 3; both states arising from the 1π42π37σ23π configuration. Molecular constants for the perturbing states are obtained in addition to improved molecular constants for the A1Π state.



1984 ◽  
Vol 62 (12) ◽  
pp. 1524-1537 ◽  
Author(s):  
Walter J. Balfour ◽  
Ram. S. Ram

The emission spectrum of the ReO molecule has been photographed under high resolution between 375 and 875 nm. In addition to the 711.9 and 404.5 nm systems previously studied a large number of new electronic transitions have been classified on the basis of Re16O/Re18O isotopic shifts. The rotational structures of 18 bands of Re16O and 1 band of Re18O have been analyzed. Two low-lying electronic states in addition to the known common lower state of the 711.9 and 404.5 nm systems have been identified.



1975 ◽  
Vol 53 (15) ◽  
pp. 1477-1482 ◽  
Author(s):  
Walter J. Balfour ◽  
Hugh M. Cartwright

The visible emission spectrum of MgD has been reexamined at high resolution. Published analyses of the A2Π → X2Σ+ system have been extended and the data have been combined with observations in the B′2Σ+ → X2Σ+ system to provide information on the ground state levels ν = 3, 4, 5, and 6 for the first time. The following molecular constants (in cm−1) have been determined—for the A2Π state: ωc = 1154.75, ωcxc = 16.675, Bc = 3.2190, Dc = 9.64 × 10−5 and for the X2Σ+ state: ωc = 1077.71, ωcxc = 15.92, Bc = 3.0306, and Dc = 9.39 × 10−5. The dissociation energies in the A2Π and X2Σ+ states have been estimated to be ~ 15 500 cm−1 and ~ 11 500 cm−1 respectively. The MgH/MgD isotope effect and the Λ doubling in the A2Π state are discussed.



1970 ◽  
Vol 48 (4) ◽  
pp. 432-452 ◽  
Author(s):  
R. B. Caton ◽  
A. E. Douglas

The electronic absorption and emission spectrum of BF has been photographed at high resolution from 900 to 11 000 Å. In this work, many new electronic states have been found and corrections have been made to earlier work. The ionization potential has been determined to be between 89 635 and 89 680 cm−1, with the most probable value being 89 650 cm−1. Tables of the vibrational and rotational constants of all the known states of BF are presented. All but two of the excited states of BF have been classified as Rydberg states and have been assigned to Rydberg series. The interactions between the various Rydberg states are discussed.



1959 ◽  
Vol 37 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Nand Lal Singh

The fine structures of three of the β bands of PO which occur near 3200 Å have been analyzed. The analysis shows that the upper state of this band system is a 2Σ and not a 2Π state as previously believed. The rotational constants of both electronic states have been determined and it is found that the ground state constants, previously determined from the γ bands, are incorrect.





1978 ◽  
Vol 72 (2) ◽  
pp. 189-199 ◽  
Author(s):  
C Amiot ◽  
C Effantin ◽  
J d'Incan ◽  
J Verges


Sign in / Sign up

Export Citation Format

Share Document