The 1S0 two-nucleon T matrix and the interior wave function

1976 ◽  
Vol 54 (22) ◽  
pp. 2225-2239 ◽  
Author(s):  
R. J. W. Hodgson ◽  
J. Tan

The fully off-shell T matrix is generated from a real symmetric function σ(k,k′) which in turn can be obtained from a knowledge of the two-body wave function in the interaction interior. The resulting T matrices are employed to compute the binding energies of 16O, 40Ca, and nuclear matter. Limiting the two-body wave function to physically acceptable forms limits the allowed σ functions. A 'difference integral' is defined in terms of the two-body scattering wave function, which seems to be strongly correlated with the binding energies.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yong-Liang Ma ◽  
Mannque Rho

AbstractTopology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the limit of large number of colors, baryons can be regarded as topological objects—skyrmions—and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying on possible “emergent” scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density n0 up to several times n0 can be fairly well described. A uniquely novel—and unorthdox—feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^{2}_{s}/c^{2} \approx 1/3$ v s 2 / c 2 ≈ 1 / 3 , with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $\gtrsim 2n_{0}$ ≳ 2 n 0 in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.


2015 ◽  
Vol 17 (22) ◽  
pp. 14636-14646 ◽  
Author(s):  
Grant E. Johnson ◽  
Astrid Olivares ◽  
David Hill ◽  
Julia Laskin

Loss of substituted phosphine ligands is strongly correlated with the electron donating ability of the phosphorous lone pair. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3 < PPh2Cy < PPhCy2 < PCy3.


1966 ◽  
Vol 44 (9) ◽  
pp. 2095-2110 ◽  
Author(s):  
Marcel Banville ◽  
P. D. Kunz

The three-body wave function for particles of equal mass is expanded in a systematic way by making use of a hyperspherical coordinate system. Apart from the center-of-mass coordinates, three of the variables are the usual Euler angles describing the orientation of the plane defined by the three particles. The other three variables, which describe the shape of the triangle, are represented in terms of a radial coordinate and two angular coordinates. The kinetic energy for these last three coordinates is separable and allows one to expand the three-body wave function in a complete set of orthogonal functions based upon the angular variables. The particular symmetry of the internal part of the wave function under permutations of the three particles is easily represented in terms of the set of functions for one of the angular variables. By choosing a particular set of radial functions one can then obtain the upper limit on the binding energy for the three-body system through the Rayleigh–Ritz variational procedure. The advantage of this particular coordinate system is that all but a few of the variational parameters occur linearly in the wave function, and the minimum energy can be obtained by diagonalizing a small number of the energy matrices. The method is applied to find the lower limit to a standard spin-independent potential of Gaussian shape.


2011 ◽  
Vol 84 (11) ◽  
Author(s):  
Shigeru Tsukamoto ◽  
Yoshiyuki Egami ◽  
Kikuji Hirose ◽  
Stefan Blügel

Sign in / Sign up

Export Citation Format

Share Document