C2Πr – X2Σ+ transition of AlO

1983 ◽  
Vol 61 (9) ◽  
pp. 1347-1358 ◽  
Author(s):  
M. Singh ◽  
M. D. Saksena

Several bands of the C2Πr – X2Σ+transition of AlO in the region 2800–3400 Å have been photographed at high resolution. A unique and unambiguous analysis of the rotational structure has been done for the first time for the 2–0, 1–0, 2–1, 0–0, 1–1, 0–1, 1–2, and 0–2 bands of this system. Fairly accurate rotational constants Beff and Deff have been determined for the ν = 2, 1, and 0 levels of the C2Πr state. Severe rotational perturbations have been observed in the C2Π, state.Equilibrium rotational constants (in cm−1) of the C2Π, state are Be ≈ 0.6049 and αe ≈ 0.0046.


1988 ◽  
Vol 66 (11) ◽  
pp. 1012-1024 ◽  
Author(s):  
R. Kępa

Seven bands ((0–0) – (0–6)) belonging to the Herzberg system of 13C18O have been recorded in emission using conventional photographic spectroscopy. For the first time, lines of this system have been recorded at high resolution and identified. After the rotational analysis of bands, the rotational constants of the C1Σ+ (ν = 0) and A1Π (ν = 0–6) states, as well as the vibrational constants of the A1Π state, have been determined. A combined analysis of the bands of the Herzberg and Ångström systems have made it possible to determine the constants of the B1Σ+ state more precisely. Numerous rotational perturbations observed in the A1Π state in this isotopic molecule have been analyzed.



1985 ◽  
Vol 63 (9) ◽  
pp. 1162-1172 ◽  
Author(s):  
M. Singh ◽  
M. D. Saksena

Several bands of the D2Σ+ – A2Πi and C2Πr – A2Πi transitions of AlO have been photographed at high resolution and analyzed for the rotational structure. Rotational structure in the vibrational levels ν = 0, 1, 2, 3, and 4 of the common lower electronic state A2Πi has been investigated for the first time. Rotational perturbations have been observed in the A2Πi state. The equilibrium rotational constants of the A2Πi state are Be = 0.53705 cm−1 and αe = 0.00491 cm−1.



1988 ◽  
Vol 66 (7) ◽  
pp. 570-575 ◽  
Author(s):  
M. Singh ◽  
M. D. Saksena ◽  
G. S. Ghodgaonkar

The 0–0 band of the B2Σ+–A2Πr system of MgCl near 4730 Å has been photographed at high resolution and analyzed for its rotational structure for the first time. Rotational constants have been determined for the B state, which is shown to be 2Σ+. Rotational perturbations have been observed in the F2 sublevels for J < 42.5 and in the F1 sublevels for J ≤ 16.5 of the B2Σ+ state.



1966 ◽  
Vol 44 (10) ◽  
pp. 2247-2250
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C and D band systems of 63Cu127I, lying in the region 4 100–4 800 Å, have been photographed in emission under high resolution. Rotational analysis of the (0–0), (0–1), and (0–2) bands of the C system and the (0–0), (0–1), (0–2), and (0–3) bands of the D system has been made. The C and D systems are found to involve 1Σ (C1Σ)–1Σ(X1Σ)and 1Π(D1Π)–1Σ(X1Σ) transitions respectively. The Λ-type splitting in the D1Π state is small. The rotational constants obtained are as follows (cm−1 units):[Formula: see text]



1987 ◽  
Vol 65 (12) ◽  
pp. 1594-1603 ◽  
Author(s):  
M. Singh ◽  
G. S. Ghodgaonkar ◽  
M. D. Saksena

The A2Π–X2Σ+ system of MgCl has been photographed at high resolution and analyzed for the rotational structure. Analysis of the low-frequency sub-bands of the 0–0, 0–1, and 0–2 bands showed that there is a nonzero Λ doubling in the common vibrational level ν′ = 0, thereby indicating that the A2Π state is regular and not inverted as presumed by earlier workers. Spin-doubling has been seen in the ν = 1 and 2 levels of the X2Σ+ state. Rotational analysis of the high-frequency sub-band has also been done for the 0–0 band.



1970 ◽  
Vol 48 (5) ◽  
pp. 632-634 ◽  
Author(s):  
K. C. Shotton ◽  
W. Jeremy Jones

The pure rotational Raman spectrum of nitric oxide has been recorded for the first time under high resolution. Analysis of the S-branch transitions yields values of 1.69614 cm−1 and 5.46 × 10−6 cm−1 for the rotational constants B0 and D0, respectively. A series of R-branch lines is observed and is shown to arise from transitions between levels in the 2Π3/2 substate. Some weaker R-branch lines arising from the 2Π1/2 state are also observed. A very weak feature approximately 120 cm−1 from the exciting line is interpreted as the 2Π3/2–2Π1/2 transition.



1992 ◽  
Vol 70 (5) ◽  
pp. 291-294 ◽  
Author(s):  
Sheila Gopal ◽  
M. Singh ◽  
G. Lakshminarayana

The emission spectrum of Si130Te was excited by microwave discharge (2450 MHz) in a sealed quartz tube. The A1Π–X1Σ+ band system (3100–3900 Å) (1 Å = 10−10 m) photographed under high resolution on a 10.6 m Ebert grating spectrograph. The rotational analysis of 32 bands was carried out, which led to the determination of the accurate vibrational and rotational constants. The rotational structure belonging to ν′ > 9 levels appear to be perturbed.



1981 ◽  
Vol 59 (10) ◽  
pp. 1313-1326 ◽  
Author(s):  
D. A. Steiner ◽  
S. R. Polo ◽  
T. K. McCubbin Jr. ◽  
K. A. Wishah

The ν1 fundamental band of DNCO has been observed for the first time under high resolution. The band origin for this deuterium–nitrogen stretching vibration is found to be at 2637.198 cm−1, rather distant from the previously reported value of 2634.9 cm−1. Eighteen subbands have been analyzed and term values for both ground and ν1 states with K up to 6 have been obtained. Effective rotational constants Bν and centrifugal distortion constants Dν and Hν have also been determined. Interaction is observed with the 2ν3 vibration which has a band origin around 2640 cm−1. Interesting perturbations are observed for the K = 0 and K = 4 levels of ν1.



1975 ◽  
Vol 53 (15) ◽  
pp. 1477-1482 ◽  
Author(s):  
Walter J. Balfour ◽  
Hugh M. Cartwright

The visible emission spectrum of MgD has been reexamined at high resolution. Published analyses of the A2Π → X2Σ+ system have been extended and the data have been combined with observations in the B′2Σ+ → X2Σ+ system to provide information on the ground state levels ν = 3, 4, 5, and 6 for the first time. The following molecular constants (in cm−1) have been determined—for the A2Π state: ωc = 1154.75, ωcxc = 16.675, Bc = 3.2190, Dc = 9.64 × 10−5 and for the X2Σ+ state: ωc = 1077.71, ωcxc = 15.92, Bc = 3.0306, and Dc = 9.39 × 10−5. The dissociation energies in the A2Π and X2Σ+ states have been estimated to be ~ 15 500 cm−1 and ~ 11 500 cm−1 respectively. The MgH/MgD isotope effect and the Λ doubling in the A2Π state are discussed.



1962 ◽  
Vol 40 (4) ◽  
pp. 423-430 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
R. K. Asundi ◽  
J. K. Brody

The B and C band systems of Cu65Cl35 lying in the region 4600–5200 Å have been photographed in emission under high resolution. Rotational analysis of the (1,0), (0,0), and (0,1) bands of each system has been made. The analysis shows that the B and C systems involve transitions 1Π(B1Π)–X1Σ and 1Σ (C1Σ)–X1Σ respectively. Due to the influence of the closeby C1Σ state, the B1Π state shows appreciable Λ-type doubling. It is found that the B1Π and C1Σ states provide an instance closely resembling the case of Van Vleck's "pure precession". The principal molecular constants obtained for the initial states of the B and C systems of Cu65Cl35 are as follows (cm−1 units):[Formula: see text]



Sign in / Sign up

Export Citation Format

Share Document