Low-temperature crystallization of in situ phosphorus-doped low-pressure chemical-vapour deposited amorphous silicon

1987 ◽  
Vol 65 (8) ◽  
pp. 1030-1032 ◽  
Author(s):  
D. Waechter ◽  
N. G. Tarr

A method has been developed for producing low-resistivity phosphorus-doped polysilicon films with a minimum thermal budget. The method involves low-pressure chemical-vapor deposition of amorphous silicon at 560 °C followed by crystallization at 650 °C. Films formed in this manner are compared to films deposited polycrystalline at 627 °C. In both cases, in situ doping is achieved by addition of PH3 diluted in SiH4 to the gas mixture. For a given SiH4: PH3 flow ratio, the phosphorus concentration determined from secondary-ion mass spectroscopy is four times larger in the amorphous-deposited material. Moreover, the resistivity is substantially lower in this material even when the dopant concentrations are similar. The latter result may be due in part to reduced dopant segregation to grain boundaries. The internal strain determined from the Raman line width is larger in the polycrystalline-deposited material but could be reduced by high-temperature annealing.

Author(s):  
Meric Firat ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Maria Recaman Payo ◽  
Filip Duerinckx ◽  
Rajiv Sharma ◽  
...  

1992 ◽  
Vol 70 (10-11) ◽  
pp. 946-948
Author(s):  
S. B. Hewitt ◽  
S.-P. Tay ◽  
N. G. Tarr ◽  
A. R. Boothroyd

Stoichiometric SiC films formed by low-pressure chemical vapour deposition from a di-tert-butylsilane source with in situ phosphorus doping from tert-butylphosphine were used as emitters in heterojunction diodes fabricated on lightly doped silicon substrates. Diode characteristics are nearly ideal, with forward current dominated by injection-diffusion in the silicon substrate.


Author(s):  
Ding-Yuan Chen ◽  
Axel R Persson ◽  
Kai Hsin Wen ◽  
Daniel Sommer ◽  
Jan Gruenenpuett ◽  
...  

Abstract The impact on the performance of GaN HEMTs of in situ ammonia (NH3) pre-treatment prior to the deposition of silicon nitride (SiN) passivation with low-pressure chemical vapor deposition is investigated. Three different NH3 pre-treatment durations (0, 3, and 10 minutes) were compared in terms of interface properties and device performance. A reduction of oxygen at the interface between SiN and epi-structure is detected by Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy measurements in the sample subjected to 10 minutes of pre-treatment. The samples subjected to NH3 pre-treatment show a reduced surface-related current dispersion of 9 % (compared to 16% for the untreated sample), which is attributed to the reduction of oxygen at the SiN/epi interface. Furthermore, NH3 pre-treatment for 10 minutes significantly improves the current dispersion uniformity from 14.5 % to 1.9 %. The reduced trapping effects result in a high output power of 3.4 W/mm at 3 GHz (compared to 2.6 W/mm for the untreated sample). These results demonstrate that the in situ NH3 pre-treatment before low-pressure chemical vapor deposition of SiN passivation is critical and can effectively improves the large-signal microwave performance of GaN HEMTs.


1995 ◽  
Vol 403 ◽  
Author(s):  
T. Mohammed-Brahim ◽  
K. Kis-Sion ◽  
D. Briand ◽  
M. Sarret ◽  
F. Lebihan ◽  
...  

AbstractThe Solid Phase Crystallization (SPC) of amorphous silicon films deposited by Low Pressure Chemical Vapor phase Deposition (LPCVD) using pure silane at 550'C was studied by in-situ monitoring the film conductance. The saturation of the conductance at the end of the crystallization process is found transient. The conductance decreases slowly after the onset of the saturation. This degradation is also observed from other analyses such as ellipsometry spectra, optical transmission and Arrhenius plots of the conductivity between 250 and 570K. Hall effect measurements show that the degradation is due to a decrease of the free carrier concentration n and not to a decrease of the mobility. This indicates a constant barrier height at the grain boundaries. The decrease of n is then due to a defect creation in the grain. Hence, whatever the substrate used, an optimum crystallization time exists. It depends on the amorphous quality film which is determined by the deposition techniques and conditions and on the crystallization parameters.


2016 ◽  
Vol 63 (10) ◽  
pp. 3887-3892 ◽  
Author(s):  
Tongde Huang ◽  
Olle Axelsson ◽  
Thanh Ngoc Thi Do ◽  
Mattias Thorsell ◽  
Dan Kuylenstierna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document