Stress Induced During the Solid-phase Crystallization of Amorphous Silicon Deposited by LPCVD

1995 ◽  
Vol 403 ◽  
Author(s):  
T. Mohammed-Brahim ◽  
K. Kis-Sion ◽  
D. Briand ◽  
M. Sarret ◽  
F. Lebihan ◽  
...  

AbstractThe Solid Phase Crystallization (SPC) of amorphous silicon films deposited by Low Pressure Chemical Vapor phase Deposition (LPCVD) using pure silane at 550'C was studied by in-situ monitoring the film conductance. The saturation of the conductance at the end of the crystallization process is found transient. The conductance decreases slowly after the onset of the saturation. This degradation is also observed from other analyses such as ellipsometry spectra, optical transmission and Arrhenius plots of the conductivity between 250 and 570K. Hall effect measurements show that the degradation is due to a decrease of the free carrier concentration n and not to a decrease of the mobility. This indicates a constant barrier height at the grain boundaries. The decrease of n is then due to a defect creation in the grain. Hence, whatever the substrate used, an optimum crystallization time exists. It depends on the amorphous quality film which is determined by the deposition techniques and conditions and on the crystallization parameters.

1996 ◽  
Vol 424 ◽  
Author(s):  
Y.-H. Song ◽  
S.-Y. Kang ◽  
K. I. Cho ◽  
H. J. Yoo ◽  
J. H. Kim ◽  
...  

AbstractThe substrate effects on the solid-phase crystallization of amorphous silicon (a-Si) have been extensively investigated. The a-Si films were prepared on two kinds of substrates, a thermally oxidized Si wafer (SiO2/Si) and a quartz, by low-pressure chemical vapor deposition (LPCVD) using Si2H6 gas at 470 °C and annealed at 600 °C in an N2 ambient for crystallization. The analysis using XRD and Raman scattering shows that crystalline nuclei are faster formed on the SiO2/Si than on the quartz, and the time needed for the complete crystallization of a-Si films on the SiO2/Si is greatly reduced to 8 h from ˜15 h on the quartz. In this study, it was first observed that crystallization in the a-Si deposited on the SiO2/Si starts from the interface between the a-Si film and the thermal oxide of the substrate, called interface-induced crystallization, while random nucleation process dominates on the quartz. The very smooth surface of the SiO2/Si substrate is responsible for the observed interface-induced crystallization of a-Si films.


1995 ◽  
Vol 398 ◽  
Author(s):  
T. Mohammed-Brahim ◽  
D. Briand ◽  
K. Kis-Sion ◽  
D. Guillet ◽  
A.C. Salaün ◽  
...  

ABSTRACTSolid Phase Crystallization of amorphous silicon films, deposited by the Low Pressure Chemical Vapor Deposition technique, is studied by in-situ monitoring the film conductance. The crystal growth rate VG, deduced from this measurement, was found to be thermally activated. The activation energy E behaviour for films with different doping varying in a great range, from undoped to 4×1019 cm−3, was then deduced. This behaviour, described for the first time in this work, shows a constant E for undoped and weak doping, then a high decrease after a doping value threshold. The undoped films show a decreasing E when the deposition rate increases i.e. when the structure of the amorphous deposited film tends to correspond to the relaxed amorphous network. All these new results are used to introduce a crystallization model based on a crystalline-amorphous double phase and on the charge of defects at the crystal-amorphous interface.


1998 ◽  
Vol 507 ◽  
Author(s):  
H. Fujiwara ◽  
Joohyun Koh ◽  
Yeeheng Lee ◽  
C. R. Wronski ◽  
R. W. Collins

ABSTRACTWe have introduced real time spectroscopic ellipsometry (RTSE) for characterization of the solid phase crystallization (SPC) of intrinsic and n-type amorphous silicon (a-Si:H) thin films. RTSE has several advantages in the study and design of SPC processes for thin film transistor and solar cell fabrication. These include the capability of obtaining (i) calibration data that yield the near surface temperature of the film during processing, (ii) the volume fraction of the crystalline Si component of the film continuously versus time during SPC, and (iii) a measurement of the grain size and quality of the final polycrystalline Si film. For the thin layers studied here (∼150-1000 Å), we demonstrate excellent fitting of the SPC dynamics to the Avrami-Johnson-Mehl theory for random nucleation and two-dimensional crystallite growth. For a-Si:H n-layers, the crystallization time over the range from 565 to 645°C appears to be weakly activated with an energy of 0.6 eV.


2000 ◽  
Vol 15 (7) ◽  
pp. 1630-1634 ◽  
Author(s):  
A. Rodríguez ◽  
J. Olivares ◽  
C. González ◽  
J. Sangrador ◽  
T. Rodríguez ◽  
...  

The crystallization kinetics and film microstructure of poly-SiGe layers obtained by solid-phase crystallization of unimplanted and C- and F-implanted 100-nm-thick amorphous SiGe films deposited by low-pressure chemical vapor deposition on thermally oxidized Si wafers were studied. After crystallization, the F- and C-implanted SiGe films showed larger grain sizes, both in-plane and perpendicular to the surface of the sample, than the unimplanted SiGe films. Also, the (111) texture was strongly enhanced when compared to the unimplanted SiGe or Si films. The crystallized F-implanted SiGe samples showed the dendrite-shaped grains characteristic of solid-phase crystallized pure Si. The structure of the unimplanted SiGe and C-implanted SiGe samples consisted of a mixture of grains with well-defined contour and a small number of quasi-dendritic grains. These samples also showed a very low grain-size dispersion.


2007 ◽  
Vol 989 ◽  
Author(s):  
Paul Stradins ◽  
Oliver Kunz ◽  
David L. Young ◽  
Yanfa Yan ◽  
Kim M. Jones ◽  
...  

AbstractSolid-phase crystallization (SPC) rates are compared in amorphous silicon films prepared by three different methods: hot-wire chemical vapor deposition (HWCVD), plasma-enhanced chemical vapor deposition (PECVD), and electron-beam physical vapor deposition (e-beam). Random SPC proceeds approximately 5 and 13 times slower in PECVD and e-beam films, respectively, as compared to HWCVD films. Doping accelerates random SPC in e-beam films but has little effect on the SPC rate of HWCVD films. In contrast, the crystalline growth front in solid-phase epitaxy experiments propagates at similar speed in HWCVD, PECVD, and e-beam amorphous Si films. This strongly suggests that the observed large differences in random SPC rates originate from different nucleation rates in these materials while the grain growth rates are relatively similar. The larger grain sizes observed for films that exhibit slower random SPC support this suggestion.


2005 ◽  
Vol 862 ◽  
Author(s):  
David L. Young ◽  
Paul Stradins ◽  
Eugene Iwaniczko ◽  
Bobby To ◽  
Bob Reedy ◽  
...  

AbstractWe measure times for complete solid phase crystallization (SPC) of hydrogenated amorphous silicon (a-Si:H) thin films that vary eight orders of magnitude, from a few ms to a few days. The time-to-crystallization activation energy is consistent with literature values of approximately 3.4 eV but the prefactor is markedly different for hot-wire chemical vapor deposition (HWCVD) films than for plasma-enhanced (PE) CVD films. The crystallized films were 0.3 – 2 μm thick, and deposited by high deposition rate (10-100 Å/s) HWCVD or standard PECVD onto glass substrates. We annealed these a-Si:H films over a wide temperature range (500 to 1100 °C) using techniques including simple hot-plates and tube furnaces, rapid thermal annealing by a tungsten-halogen lamp, and microwave electromagnetic heating at 2.45 GHz (magnetron) and 110 GHz (gyrotron).


Sign in / Sign up

Export Citation Format

Share Document