Thermal radiation and conduction properties of materials ranging from sand to rock-fill

2011 ◽  
Vol 48 (4) ◽  
pp. 532-542 ◽  
Author(s):  
Marie-Hélène Fillion ◽  
Jean Côté ◽  
Jean-Marie Konrad

This paper presents an experimental study on thermal radiation and the thermal conductivity of rock-fill materials using a 1 m × 1 m × 1 m heat transfer cell. Testing temperatures are applied by temperature-controlled fluid circulation at the top and bottom of the sample. Heat flux and temperature profiles are measured to establish the effective thermal conductivity λe, which includes contributions from both conduction and radiation heat transfer mechanisms. The materials studied had an equivalent particle size (d10) ranging from 90 to 100 mm and porosity (n) ranging from 0.37 to 0.41. The experimental results showed that thermal radiation greatly affects the effective thermal conductivity of materials with λe values ranging from 0.71 to 1.02 W·m−1·K−1, compared with a typical value of 0.36 W·m−1·K−1 for conduction alone. As expected, the effective thermal conductivity increased with particle size. An effective thermal conductivity model has been proposed, and predictions have been successfully compared with the experimental results. Radiation heat transfer becomes significant for d10 higher than 10 mm and predominant at values higher than 90 mm. The results of the study also suggest that the cooling potential of convection embankments used to preserve permafrost conditions may not be as efficient as expected because of ignored radiation effects.

Author(s):  
Sunil Murthy ◽  
Andrei Fedorov

In this study, a modeling framework for heat and mass transport is investigated for a unit cell of the monolith type SOFC, with emphasis on quantifying the radiation heat transfer effects. The Schuster-Schwartzchild two-flux approximation is used for treating thermal radiation transport in the optically thin YSZ electrolyte, and the Rosseland radiative thermal conductivity is used to account for radiation effects in the optically thick Ni-YSZ and LSM electrodes. The thermal radiation heat transfer is coupled to the overall energy conservation equations through the divergence of the local radiative flux. A commercially available CFD software was used as a platform for the global thermal-fluid modeling of the SOFC and the radiation models were implemented through the user-defined functions. Results from sample calculations show significant changes in the operating temperatures and parameters of the SOFC with the inclusion of radiation effects.


Author(s):  
Shigeki Hirasawa ◽  
Hiroyuki Ishibashi ◽  
Kazuhisa Kurashige ◽  
Akihiro Gunji

Temperature distributions and thermal stress distributions in a semi-transparent GSO crystal during Czochralski (CZ) single crystal growth were numerically investigated by thermal radiation heat transfer analysis and anisotropy stress analysis. As GSO has special optical properties, such as semi-transparency at a wavelength shorter than 4.5 μm, thermal radiation heat transfer was calculated by the Monte Carlo method. These calculations showed that thermal stress is caused by the radial temperature distribution on the outside of the upper part of the crystal. To reduce this temperature distribution, the following three manufacturing conditions were found to be effective: use a sharp taper angle of the crystal, install a lid to the top of the insulator, and install a ring around the tapered part of the crystal.


Sign in / Sign up

Export Citation Format

Share Document