A note on pile load test interpretation

1970 ◽  
Vol 7 (4) ◽  
pp. 479-481
Author(s):  
K. Peaker

Pile load tests are normally carried out in accordance with A.S.T.M. or other building code specifications without regard to the actual pile type or soil type. The example quoted indicates that the test procedure may lead to incorrect interpretation of failure and conservative design.

2011 ◽  
Vol 243-249 ◽  
pp. 4402-4407
Author(s):  
Yong Hong Miao ◽  
Guo Jun Cai ◽  
Song Yu Liu

Six methods to determine axial pile capacity directly based on piezocone penetration test (CPTU) data are presented and evaluated. Analyses and evaluation were conducted on three types piles that were failed during pile load testing. The CPT methods, as well as the CPTU methods, were used to estimate the load carrying capacities of the investigated piles (Qp ). Pile load test were used to determine the measured load carrying capacities (Qm). The pile capacities determined using the different methods were compared with the measured pile capacities obtained from the pile load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp /Qm. Results of the analyses showed that the best methods for determining pile capacity are the CPTU methods.


2009 ◽  
Vol 46 (9) ◽  
pp. 1046-1061 ◽  
Author(s):  
Mohammed Sakr

The results of a comprehensive pile load-test program and observations from field monitoring of helical piles with either a single helix or double helixes installed in oil sand are presented in this paper. Eleven full-scale pile load tests were carried out including axial compression, uplift, and lateral load tests. The results of the full-scale load tests are used to develop a theoretical design model for helical piles installed in oil sand. Test results confirm that the helical pile is a viable deep foundation option for support of heavily loaded structures. The test results also demonstrated that circular-shaft helical piles can resist considerable lateral loads.


2011 ◽  
Vol 48 (9) ◽  
pp. 1354-1363 ◽  
Author(s):  
Gang Zheng ◽  
Yu Diao ◽  
C.W.W. Ng

To provide support to superstructure and substructure, piles are often installed beneath a deep basement prior to its excavation. However, the effects of stress relief on the performance and capacity of piles due to deep excavation are rarely reported in the literature. In this study, two different types of pile load tests were simulated with and without considering excavation effects by conducting parametric axisymmetric finite element analyses. The first test was a pile load test on a sleeved pile from the ground surface prior to deep excavation, and the other is a load test on an unsleeved pile at the final excavated level. It is found that an excavation could reduce the pile capacity by up to 45% and pile stiffness by up to 75%. The effects of stress relief due to an excavation increase with normalized excavation depth (H/L) and excavation radius (R/H). Moreover, the maximum tension induced in a pile by excavation varies with H/L, and it has a peak value when 1 < H/L < 1.25. The value of maximum tension increases with the pile–soil modulus ratio (Ep/Esm). When Ep/Esm = 100, peak tension develops at 0.5H. On the other hand, tension reaches a peak at 0.7H when Ep/Esm = 20.


1993 ◽  
Vol 30 (1) ◽  
pp. 34-45 ◽  
Author(s):  
K. W. Biggar ◽  
D. C. Sego

A pile load test program carried out in Iqaluit, Northwest Territories, to provide design information for the Short Range Radar sites is described. The program consisted of testing 10 steel pipe piles with various surface modifications backfilled with clean sand and 4 Dywidag bars backfilled with Ciment Fondu™ grout. All tests were performed in saline permafrost. This paper describes the site conditions, installation procedures and pile uplift load testing procedures, and results of the pile load tests. The beneficial effect of modifications to the pile surface and backfill material is identified. The analysis and discussions of the results are presented in a companion paper. Key words : permafrost, saline, piles, load tests, field, in situ, capacity.


2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Szilárd Kanizsár

In 3D geotechnical modelling it is essential for the realistic simulation of soil behavior that the parameters of the hardening soil with small strain constitutive model are specified appropriately. The possibility of deriving these parameters for very stiff cohesive soils similar to the so called Kiscell clay that has a significant role in deep construction projects in Budapest, from laboratory and field tests is rather limited. The results of the pile load test completed for the MOL Campus high-rise building project proved to be useful data source. The article presents the circumstances of the quoted Osterberg-cell pile load tests and the modelling of the pile performed by the above-mentioned soil model. The parameters specified on the basis of laboratory tests - and in absence of those based on literature - data can be fine-tuned by approaching the load test results.


2018 ◽  
Vol 28 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Krzysztof Żarkiewicz

Abstract Transfer of axial force from the head of a pile to the surrounding soil by skin friction and toe resistance is still uncertain. The results of the static pile load test are usually presented as settlement curve. This curve can be divided into two components: skin friction curve and toe resistance curve according to the settlement. Laboratory research of pile load test was carried out in two schemes: with skin friction and without skin friction. The study proved that the toe resistance with and without skin friction is not the same. Skin friction influence on toe resistance due to settlement. This phenomenon is not usually taken into account, but very often has a significant impact on axially applied load transfer. In the paper results of laboratory pile load tests id, different schemes were presented.


1983 ◽  
Vol 20 (2) ◽  
pp. 353-361
Author(s):  
J. Bertok ◽  
M. Berezowski

This technical note describes a case history of pile load tests for the Calgary Air Terminal building. One drilled, cast-in-place, concrete caisson, socketed into bedrock, and compacted expanded-base concrete piles were tested and evaluated to select a pile type that would support column loads up to 6700 kN. This note describes the pile test program, interprets the load test results, and summarizes the pile specifications and installation. Keywords: building foundation, piles, load testing, interpretation, installation.


Author(s):  
Askar Zhussupbekov ◽  
Rauan Lukpanov ◽  
Abdulla Omarov

Traditionally, pile load tests in Kazakhstan are carried out using static and dynamic load test methods. Static pile load test is the most reliable method to obtain the load-settlement relation of piles. Most of the static pile load tests are performed using reaction systems. Furthermore, cost and time for the static pile load test are relatively high compared to the dynamic pile load testing. Therefore, the number of pile load tests in construction site is limited to 2 or 5 piles in usual of constructed piles In Kazakhstan. This paper includes the short summary about dynamic and static tests by driven piles (cross-section 30×30 cm and length of 12 m). The methodologies of definition bearing capacity of the pile by aforementioned methods were also given. As an example for those methods, paper describes the results of the dynamic, traditional static and the new PDA (Pile Dynamic Analyzer) tests of cooperative work of soils and piles performed in the construction site of the New Railway Station in Astana. According to the results of tests were determined the possible depth of penetration and bearing capacity of piles, as well as recommendations on the device of working. The construction is part of the preparations for EXPO 2017. It will be 11 times bigger than the existing railway station. The height of the six-floor complex will be 49.5 metres, the width 116 metres and the length 630 metres.


1970 ◽  
Vol 7 (4) ◽  
pp. 464-470 ◽  
Author(s):  
J. L. Seychuk

Load tests involving the use of a steel plate, a concrete socket, and full scale concrete piles were carried out at two separate sites in Ontario to determine the load bearing characteristics of shale and limestone bedrock. It was found that the essentially sound bedrock behaved as an elastic material under the maximum applied pressure of 260 tons/sq. ft (254 × 104 kg/m2). In addition to the vertical load tests on the rock, a lateral pile load test was carried out to evaluate the modulus of horizontal subgrade reaction of the fissured clay overburden at one of the sites.


Sign in / Sign up

Export Citation Format

Share Document