pile load test
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 24)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Vol 961 (1) ◽  
pp. 012013
Author(s):  
Raghad Adel ◽  
Ressol R. Shakir

Abstract in geotechnical engineering, foundation piles are ideal for deep foundations that cannot bear higher loads. This architectural expansion places a great deal of responsibility on the engineer to anticipate the appropriate load for the constructor. Unfortunately, calculations of the pile’s bearing capacity are not accessible. It has always been a source of concern for geotechnical engineers, as the structure’s safety depends on the pile’s bearing capacity and gives it a safe value. These research tests are previously known pile load test data from several locations in Nasiriyah to determine the ultimate load-carrying capacity using various interpreting methodologies. A database that was used to test the pile load for three different areas in Nasiriyah, southern Iraq: The Main Drain River Bridge Project, the Al-Eskan Interchange Project, and the Al-Hawra Hospital, as determined by analytical methods, as well as evaluating the final loading values resulting from the methods used, by ASTM D-1143, American and British Standard Code of Practice BS 800. The final capacity for the pile bearing is estimated using these approaches, which are depicted in the form of a graph-based on field data. Chin-Kondner and Brinch Hansen algorithms anticipate the highest failure load for all piles based on the comparison. On average, Chin–Kondner’s ultimate load is 22% higher than Hansen’s maximum load for the 22 pile load tests. Decourt and DeBeer, and Mazurkiewicz’s techniques yielded the closest average failure load. Buttler-Hoy approach yielded the smallest failure load.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ahrar Mahmood ◽  
Badee Alshameri ◽  
Muhammad Hamza Khalid ◽  
S. Muhammad Jamil

Different methods have been used to determine the pile bearing capacity such as static equations, dynamic equations, empirical methods (EMs), numerical methods, computer software programs, and the pile static load test, these methods were giving different values for pile bearing capacity. In this paper, three empirical methods (Ems) have been selected (Brinch-Hansen, Chin-Kondner, and Decourt) and (AllPile 6) software (AP) has been applied to determine the capacity load of piles for six cases study of drilled concrete piles with a diameter ranging from 800 mm to 1500mm and embedded length ranged 10.5m to 26m. Four of those six piles are located at Portsudan city near the red seacoast and two piles are located in Khartoum city. The results of the pile bearing capacity (PC) calculations obtained using the above-mentioned different methods were compared with results produced by the pile load test. In all six cases study, the settlement of piles was limited, settlement failure was not reached. The results show that the AllPile 6 (AP) and the three mentioned empirical methods (Ems) gave reasonable piles bearing capacity, the (AP) and (BHM) gave the better result than the CKM and DM. While (DM) gave results similar to results determined using the (CKM). However, it was not preferred to use the (CKM) and (DM), unless the failure settlement has occurred in the pile load test.


2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Szilárd Kanizsár

In 3D geotechnical modelling it is essential for the realistic simulation of soil behavior that the parameters of the hardening soil with small strain constitutive model are specified appropriately. The possibility of deriving these parameters for very stiff cohesive soils similar to the so called Kiscell clay that has a significant role in deep construction projects in Budapest, from laboratory and field tests is rather limited. The results of the pile load test completed for the MOL Campus high-rise building project proved to be useful data source. The article presents the circumstances of the quoted Osterberg-cell pile load tests and the modelling of the pile performed by the above-mentioned soil model. The parameters specified on the basis of laboratory tests - and in absence of those based on literature - data can be fine-tuned by approaching the load test results.


2021 ◽  
pp. 639-649
Author(s):  
Gouthami Manthena ◽  
Srinivas Kadali ◽  
Madhav Madhira

UKaRsT ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nisa Utami Rachmayanti ◽  
Paulus Pramono Rahardjo

Pile loading tests to check the bearing capacity to support large loads. We can also use it to measure its deflection under lateral load.  There  are  two  tests:  the  axial  static  pile  load  test (Kentledge)  and  the  two-directional  static  pile  load  test (Bidirectional).  T-Z  curve  as  the  result  analysis  based  on  the instrumented  pile  test  data  describes  the  load  distribution  and mobilized skin friction along with the pile. Numbers of Vibrating Wire  Strain  Gauge  (VWSG)  mounted  in  several  depths  of  the bored  pile  and  two  tell-tale  on  top  and  toe  of  the  pile  used  as primary  data  in  this  research.  This  research  to  determine  the different  distribution  of  mobilized  skin  friction.  The  pile  from two different pile load test methods from the calculated t-z curve as  the  study  developed  from  both  methods  of  pile  test.  The research results that the kentledge system has bigger mobilized skin friction than in bidirectional test.


Sign in / Sign up

Export Citation Format

Share Document