NAVSTAR/GPS Single Point Positioning at Sheltech Canada — Preliminary Results

1982 ◽  
Vol 36 (1) ◽  
pp. 29-42
Author(s):  
GÉrard Lachapelle ◽  
Norman Beck

Sheltech Canada’s active involvement in the use of Navstar/GPS for positioning was highlighted by the acquisition, in mid 1980, of a second generation geodetic receiver from Stanford Telecommunications Inc. of Sunnyvale, California, U.S.A. A brief description of Sheltech’s STI 5010 GPS receiver, auxiliary equipment and real-time software required to operate the system is presented. Mathematical models and least-squares algorithms used to derive three-dimensional positions from pseudorange observations are described. Related validation tests carried out over several months indicate that the anticipated 10-m accuracy (1 σ level) for instantaneous single point positioning, predicted for the fully operational GPS constellation starting in 1987, is already achievable for certain periods of time. Sheltech’s future plans regarding offshore and land positioning, and the integration of the GPS receiver system with other navigation aids, e.g., inertial systems, are summarized.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio Angrisano ◽  
Salvatore Gaglione ◽  
Ciro Gioia ◽  
Marco Massaro ◽  
Salvatore Troisi

The GNSS measurements are strongly affected by ionospheric effects, due to the signal propagation through ionosphere; these effects could severely degrade the position; hence, a model to limit or remove the ionospheric error is necessary. The use of several techniques (DGPS, SBAS, and GBAS) reduces the ionospheric effect, but implies the use of expensive devices and/or complex architectures necessary to meet strong requirements in terms of accuracy and reliability for safety critical application. The cheapest and most widespread GNSS devices are single frequency stand-alone receivers able to partially correct this kind of error using suitable models. These algorithms compute the ionospheric delay starting from ionospheric model, which uses parameters broadcast within the navigation messages. NeQuick is a three-dimensional and time-dependent ionospheric model adopted by Galileo, the European GNSS, and developed by International Centre for Theoretical Physics (ICTP) together with Institute for Geophysics, Astrophysics, and Meteorology of the University of Graz. The aim of this paper is the performance assessment in single point positioning of the NeQuick Galileo version provided by ESA and the comparison with respect to the Klobuchar model used for GPS; the analysis is performed in position domain and the errors are examined in terms of RMS and maximum error for the horizontal and vertical components. A deep analysis is also provided for the application of the exanimated model in the first possible Galileo only position fix.


GPS Solutions ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Lukasz K. Bonenberg ◽  
Craig M. Hancock ◽  
Gethin W. Roberts

Positioning ◽  
2014 ◽  
Vol 05 (04) ◽  
pp. 107-114 ◽  
Author(s):  
Rock Santerre ◽  
Lin Pan ◽  
Changsheng Cai ◽  
Jianjun Zhu

2007 ◽  
Vol 42 (3) ◽  
pp. 149-153
Author(s):  
A. Farah

Code Single Point Positioning Using Nominal Gnss Constellations (Future Perception) Global Navigation Satellite Systems (GNSS) have an endless number of applications in industry, science, military, transportation and recreation & sports. Two systems are currently in operation namely GPS (the USA Global Positioning System) and GLONASS (the Russian GLObal NAvigation Satellite System), and a third is planned, the European satellite navigation system GALILEO. The potential performance improvements achievable through combining these systems could be significant and expectations are high. The need is inevitable to explore the future of positioning from different nominal constellations. In this research paper, Bernese 5.0 software could be modified to simulate and process GNSS observations from three different constellations (GPS, Glonass and Galileo) using different combinations. This study presents results of code single point positioning for five stations using the three constellations and different combinations.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6197
Author(s):  
Kai Liu ◽  
Xiye Guo ◽  
Jun Yang ◽  
Xiaoyu Li ◽  
Changshui Liu ◽  
...  

Precise single-point positioning using carrier-phase measurements can be provided by the synchronized pseudolite system. The primary task of carrier phase positioning is ambiguity resolution (AR) with rapidity and reliability. As the pseudolite system is usually operated in the dense multipath environment, cycle slips may lead the conventional least-squares ambiguity decorrelation adjustment (LAMBDA) method to incorrect AR. A new AR method based on the idea of the modified ambiguity function approach (MAFA), which is insensitive to the cycle slips, is studied in this paper. To improve the model strength of the MAFA and to eliminate the influence of constant multipath biases on the time-average model in static mode, the kinematic multi-epoch MAFA (kinematic ME-MAFA) algorithm is proposed. A heuristic method for predicting the ‘float position’ corresponding to every Voronoi cell of the next epoch, making use of Doppler-based velocity information, is implemented to improve the computational efficiency. If the success rate is very close to 1, it is possible to guarantee reliable centimeter-level accuracy positioning without further ambiguity validation. Therefore, a computing method of the success rate for the kinematic ME-MAFA is proposed. Both the numerical simulations and the kinematic experiment demonstrate the feasibility of the new AR algorithm according to its accuracy and reliability. The accuracy of the horizontal positioning solution is better than 1.7 centimeters in our pseudolite system.


1996 ◽  
Vol 70 (9) ◽  
pp. 562-571 ◽  
Author(s):  
G. Lachapelle ◽  
M. E. Cannon ◽  
W. Qiu ◽  
C. Varner

Sign in / Sign up

Export Citation Format

Share Document