APPROACHES TO NON-CONTACT ANTERIOR CRUCIATE LIGAMENT INJURY STUDIES: UTILITY OF OPERATIONS RESEARCH AND ARTIFICIAL INTELLIGENCE

2011 ◽  
Vol 35 (2) ◽  
pp. 145-159
Author(s):  
Nicholas Ali ◽  
Gholamreza Rouhi ◽  
Gordon Robertson

A multidisciplinary design optimization (MDO) approach is proposed to aid in the prediction of non-contact anterior cruciate ligament (ACL) injury mechanisms and risk factors. In this investigation the need for such an approach is argued based on an exhaustive evaluation of diverse factors that cause non-contact ACL injury, and the similarly numerous and different existing study approaches that have been carried out to investigate injury. The proposed MDO approach fuses patient data and existing study approaches via an artificial intelligent (AI) technique—absent in previous biomechanics investigations—so as to offer new insights into ACL injury prevention.

2020 ◽  
Vol 9 (1) ◽  
pp. 72-78
Author(s):  
Sandra J. Shultz ◽  
Randy J. Schmitz

Despite considerable advances in anterior cruciate ligament (ACL) injury-risk identification and prevention over the past 20 years, the annual incidence of ACL injury has continued to rise, and females remain at greater risk of both primary and secondary ACL injury. Important questions remain regarding ancillary risk factors we should target, the most effective training and rehabilitation approaches to ensure retention and transfer of learned skills from the rehabilitation setting to real-world sporting environment, and the development of more evidence-based criteria for return to sport that consider the whole athlete. As we look to the future, the optimization of primary and secondary ACL-injury prevention represents a complex, multidisciplinary problem with many unique and exciting opportunities to engage the various subdisciplines of kinesiology to address these emerging questions.


2008 ◽  
Vol 43 (4) ◽  
pp. 396-408 ◽  
Author(s):  
Yohei Shimokochi ◽  
Sandra J. Shultz

Abstract Objective: To examine and summarize previous retrospective and observational studies assessing noncontact anterior cruciate ligament (ACL) injury mechanisms and to examine such reported ACL injury mechanisms based on ACL loading patterns due to knee loadings reported in in vivo, in vitro, and computer simulation studies. Data Sources: We searched MEDLINE from 1950 through 2007 using the key words anterior cruciate ligament + injury + mechanisms; anterior cruciate ligament + injury + mechanisms + retrospective; and anterior cruciate ligament + injury + mechanisms + video analysis. Study Selection: We selected retrospective studies and observational studies that specifically examined the noncontact ACL injury mechanisms (n  =  7) and assessed ACL loading patterns in vivo, in vitro, and using computer simulations (n  =  33). Data Extraction: The motion patterns reported as noncontact ACL injury mechanisms in retrospective and observational studies were assessed and critically compared with ACL loading patterns measured during applied external or internal (or both) forces or moments to the knee. Data Synthesis: Noncontact ACL injuries are likely to happen during deceleration and acceleration motions with excessive quadriceps contraction and reduced hamstrings co-contraction at or near full knee extension. Higher ACL loading during the application of a quadriceps force when combined with a knee internal rotation moment compared with an external rotation moment was noted. The ACL loading was also higher when a valgus load was combined with internal rotation as compared with external rotation. However, because the combination of knee valgus and external rotation motions may lead to ACL impingement, these combined motions cannot be excluded from the noncontact ACL injury mechanisms. Further, excessive valgus knee loads applied during weight-bearing, decelerating activities also increased ACL loading. Conclusions: The findings from this review lend support to ACL injury prevention programs designed to prevent unopposed excessive quadriceps force and frontal-plane or transverse-plane (or both) moments to the knee and to encourage increased knee flexion angle during sudden deceleration and acceleration tasks.


2010 ◽  
Vol 4 (1) ◽  
pp. 178-189 ◽  
Author(s):  
Nicholas Ali ◽  
Gholamreza Rouhi

High incidences of non-contact anterior cruciate ligament (ACL) injury, frequent requirements for ACL reconstruction, and limited understanding of ACL mechanics have engendered considerable interest in quantifying the ACL loading mechanisms. Although some progress has been made to better understand non-contact ACL injuries, information on how and why non-contact ACL injuries occur is still largely unavailable. In other words, research is yet to yield consensus on injury mechanisms and risk factors. Biomechanics, video analysis, and related study approaches have elucidated to some extent how ACL injuries occur. However, these approaches are limited because they provide estimates, rather than precise measurements of knee - and more specifically ACL - kinematics at the time of injury. These study approaches are also limited in their inability to simultaneously capture many of the contributing factors to injury. This paper aims at elucidating and summarizing the key challenges that confound our understanding in predicting the mechanisms and subsequently identifying risk factors of non-contact ACL injury. This work also appraise the methodological rigor of existing study approaches, review testing protocols employed in published studies, as well as presents a possible coupled approach to better understand injury mechanisms and risk factors of non-contact ACL injury. Three comprehensive electronic databases and hand search of journal papers, covering numerous full text published English articles were utilized to find studies on the association between ACL and injury mechanisms, ACL and risk factors, as well as, ACL and investigative approaches. This review unveils that new research modalities and/or coupled research methods are required to better understand how and why the ACL gets injured. Only by achieving a better understanding of ACL loading mechanisms and the associated contributing factors, one will be able to develop robust prevention strategies and exercise regimens to mitigate non-contact ACL injuries.


2021 ◽  
pp. bjsports-2020-103173
Author(s):  
Joanne L Parsons ◽  
Stephanie E Coen ◽  
Sheree Bekker

BackgroundThe anterior cruciate ligament (ACL) injury rate for girls/women has not changed in over 20 years, and they remain 3–6 times more likely to experience injury compared with boys/men. To date, ACL injury prevention and management has been approached from a sex-based biological point of view which has furthered our understanding of injury risk factors, mechanisms, and prevention and rehabilitation programmes. However, the traditional sex-based approach does not take into account the growing recognition of how sex and gender (a social construct) are ‘entangled’ and influence each other.ObjectiveThis paper discusses the curious absence of gender as an influencer in the dialogue surrounding ACL injuries. We propose adding gender as a pervasive developmental environment as a new theoretical overlay to an established injury model to illustrate how gender can operate as an extrinsic determinant from the presport, training and competition environments through to ACL injury and the treatment environment.ApproachWe draw on social epidemiological theories of the embodiment of gender and health to provide plausible examples of how gender may influence ACL injury, and demonstrate the opportunity for new, interdisciplinary research in the field.ConclusionOver 20 years of research has failed to decrease the ACL injury rate disparity between girls/women and boys/men. Embedding gender in the study of ACL injury will heighten awareness of possible influences outside the traditional biological elements, challenge us to think about the inextricable ‘entanglement’ of sex and gender, and inform more effective approaches to ACL injury prevention and treatment.


2019 ◽  
Vol 7 (1) ◽  
pp. 232596711881983 ◽  
Author(s):  
Zoë A. Englander ◽  
Hattie C. Cutcliffe ◽  
Gangadhar M. Utturkar ◽  
William E. Garrett ◽  
Charles E. Spritzer ◽  
...  

Background: Knee positions involved in noncontact anterior cruciate ligament (ACL) injury have been studied via analysis of injury videos. Positions of high ACL strain have been identified in vivo. These methods have supported different hypotheses regarding the role of knee abduction in ACL injury. Purpose/Hypothesis: The purpose of this study was to compare knee abduction angles measured by 2 methods: using a 3-dimensional (3D) coordinate system based on anatomic features of the bones versus simulated 2-dimensional (2D) videographic analysis. We hypothesized that knee abduction angles measured in a 2D videographic analysis would differ from those measured from 3D bone anatomic features and that videographic knee abduction angles would depend on flexion angle and on the position of the camera relative to the patient. Study Design: Descriptive laboratory study. Methods: Models of the femur and tibia were created from magnetic resonance images of 8 healthy male participants. The models were positioned to match biplanar fluoroscopic images obtained as participants posed in lunges of varying flexion angles (FLAs). Knee abduction angle was calculated from the positioned models in 2 ways: (1) varus-valgus angle (VVA), defined as the angle between the long axis of the tibia and the femoral transepicondylar axis by use of a 3D anatomic coordinate system; and (2) coronal plane angle (CPA), defined as the angle between the long axis of the tibia and the long axis of the femur projected onto the tibial coronal plane to simulate a 2D videographic analysis. We then simulated how changing the position of the camera relative to the participant would affect knee abduction angles. Results: During flexion, when CPA was calculated from a purely anterior or posterior view of the joint—an ideal scenario for measuring knee abduction from 2D videographic analysis—CPA was significantly different from VVA ( P < .0001). CPA also varied substantially with the position of the camera relative to the participant. Conclusion: How closely CPA (derived from 2D videographic analysis) relates to VVA (derived from a 3D anatomic coordinate system) depends on FLA and camera orientation. Clinical Relevance: This study provides a novel comparison of knee abduction angles measured from 2D videographic analysis and those measured within a 3D anatomic coordinate system. Consideration of these findings is important when interpreting 2D videographic data regarding knee abduction angle in ACL injury.


2012 ◽  
Vol 41 (2) ◽  
pp. 385-395 ◽  
Author(s):  
Jason W. Levine ◽  
Ata M. Kiapour ◽  
Carmen E. Quatman ◽  
Samuel C. Wordeman ◽  
Vijay K. Goel ◽  
...  

Author(s):  
Ali Hosseini ◽  
Thomas J. Gill ◽  
Guoan Li

The knowledge of in-vivo ACL forces is instrumental for understanding ACL injury mechanisms and for improving surgical ACL reconstruction techniques. Several in-vitro investigations have measured ACL forces in response to various loads applied to the knee. However, in-vivo ACL forces in response to controlled loading are still unknown. The objective of this study was to estimate the force of healthy ACL as well as the possible upper bound of ACL forces under an increasing axial tibial loading in living subjects using a non-invasive method.


2020 ◽  
Vol 54 (9) ◽  
pp. 520-527 ◽  
Author(s):  
Guri Ranum Ekås ◽  
Clare L Ardern ◽  
Hege Grindem ◽  
Lars Engebretsen

ObjectiveTo investigate the risk of new meniscal tears after treatment for anterior cruciate ligament (ACL) injury, in children and adults with and without ACL reconstruction.DesignPrognosis systematic review (PROSPERO registration number CRD42016036788).MethodsWe searched Embase, Ovid Medline, Cochrane, CINAHL, SPORTDiscus, PEDro and Google Scholar from inception to 3rd May 2018. Eligible articles included patients with ACL injury (diagnosis confirmed by MRI and/or diagnostic arthroscopy), reported the number of meniscal tears at the time of ACL injury diagnosis/start of treatment and reported the number of new meniscal tears that subsequently occurred. Articles with fewer than 20 patients at follow-up, and articles limited to ACL revision surgery or multi-ligament knee injuries were excluded. Two independent reviewers screened articles, assessed eligibility, assessed risk of bias and extracted data. We judged the certainty of evidence using the Grading of Recommendations Assessment Development and Evaluation (GRADE) working group methodology.ResultsOf 75 studies included in the systematic review, 54 studies with 9624 patients and 501 new meniscal tears were appropriate for quantitative analysis. Heterogeneity precluded data pooling. The risk of new meniscal tears was 0%–21% when follow-up was <2 years, 0%–29% when follow-up was 2 to 5 years, 5%–52% when follow-up was 5 to 10 years and 4%–31% when follow-up was longer than 10 years. The proportion of studies with high risk of selection, misclassification and detection bias was 84%, 69% and 68%, respectively. Certainty of evidence was very low.ConclusionNew meniscal tears occurred in 0%–52% of patients between 4 months and 20 years (mean 4.9±4.4 years) following treatment for ACL injury. The certainty of evidence was too low to guide surgical treatment decisions. This review cannot conclude that the incidence of new meniscal tears is lower if ACL injury is treated with surgery compared with treatment with rehabilitation only.


2011 ◽  
Vol 39 (8) ◽  
pp. 1706-1714 ◽  
Author(s):  
Carmen E. Quatman ◽  
Ali Kiapour ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Constantine K. Demetropoulos ◽  
...  

2015 ◽  
Vol 50 (10) ◽  
pp. 1005-1010 ◽  
Author(s):  
Dustin R. Grooms ◽  
Stephen J. Page ◽  
James A. Onate

Background Anterior cruciate ligament (ACL) injury has multifactorial causes encompassing mechanical, hormonal, exposure, and anatomical factors. Alterations in the central nervous system also play a role, but their influence after injury, recovery, and recurrent injury remain unknown. Modern neuroimaging techniques can be used to elucidate the underlying functional and structural alterations of the brain that predicate the neuromuscular control adaptations associated with ACL injury. This knowledge will further our understanding of the neural adaptations after ACL injury and rehabilitation and in relation to injury risk. In this paper, we describe the measurement of brain activation during knee extension-flexion after ACL injury and reconstruction and 26 days before a contralateral ACL injury. Methods Brain functional magnetic resonance imaging data for an ACL-injured participant and a matched control participant were collected and contrasted. Results Relative to the matched control participant, the ACL-injured participant exhibited increased activation of motor-planning, sensory-processing, and visual-motor control areas. A similar activation pattern was present for the contralateral knee that sustained a subsequent injury. Conclusions Bilateral neuroplasticity after ACL injury may contribute to the risk of second injury, or aspects of neurophysiology may be predisposing factors to primary injury. Clinical Implications Sensory-visual-motor function and motor-learning adaptations may provide targets for rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document