HEALTH ASSESSMENT FOR HYDRAULIC SERVO SYSTEM USING MANIFOLD LEARNING BASED ON EMD

2015 ◽  
Vol 39 (3) ◽  
pp. 581-591 ◽  
Author(s):  
Yujie Cheng ◽  
Chen Lu ◽  
Jian Ma

This study proposes a health assessment method for the hydraulic servo system using manifold learning based on empirical mode decomposition (EMD). An RBF neural network is adopted as a fault observer for the hydraulic servo system to generate a residual error signal. Then, the residual error signal is decomposed by EMD to form the initial feature matrix. To extract more sensitive features and reduce time consumption, isometric mapping algorithm is introduced to reduce the dimensionality of the initial feature matrix. Furthermore, the singular values of the reduced feature matrix are extracted for the subsequent health assessment. Considering the traditional Euclidean distance metric can only reflect local consistency, this study utilizes manifold distance (ManiD) to measure the health condition of the hydraulic servo system. Finally, the ManiD is converted into a confidence value, which directly represents the health status. Experiment results demonstrate the effectiveness of the proposed method.

2015 ◽  
Vol 764-765 ◽  
pp. 691-697
Author(s):  
Yu Jie Cheng ◽  
Chen Lu ◽  
Li Mei Wang ◽  
Hong Mei Liu

A fault detection and diagnosis method for the hydraulic servo system based on adaptive threshold and self-organizing map (SOM) neural network is proposed in this study. The nonlinear, time-varying, fluid-solid coupling properties of the hydraulic servo system are considered. Fault detection is realized based on a two-stage radial basis function (RBF) neural network model. The first-stage RBF neural network is adopted as a fault observer for the hydraulic servo system; the residual error signal is generated by comparing the estimated observer output with the actual measurements. To overcome the drawback of false alarms when the traditional fixed fault threshold is used, an adaptive threshold producer is established by the second-stage RBF neural network. Fault occurrence is detected by comparing the residual error signal with the adaptive threshold. When a system fault is detected, the SOM neural network is employed to implement fault classification and isolation by analyzing the features of the residual error signal. Three types of common faults are simulated to verify the performance and effectiveness of the proposed method. Experimental results demonstrate that the proposed method based on adaptive threshold and SOM neural network is effective in detecting and isolating the failure of the hydraulic servo system.


2015 ◽  
Vol 764-765 ◽  
pp. 703-707
Author(s):  
Xuan Wang ◽  
Hong Mei Liu ◽  
Chen Lu

A hydraulic servo system is a typical feedback control system. Health assessment of a hydraulic servo system is usually difficult to realize when traditional methods based on sensor signals are utilized. An approach for health assessment of hydraulic servo systems based on multi-fractal analysis and Gaussian mixture model (GMM) is proposed in this study. A GRNN neural network is employed to establish a fault observer for the hydraulic servo system. The observer is utilized to simulate the system output under normal state. The residue is then generated by subtracting the estimated output from the actual output. The residue’s feature is extracted by fractal analysis. After the feature extraction, the overlap between the current feature vectors and the normal feature vectors is obtained by applying GMM. The confidence value (CV) can be obtained in advance; this value is employed to characterize the health degree of the current state and consequently implement the health assessment of the hydraulic servo system. Lastly, two common types of fault, namely, burst and gradual, are applied to validate the effectiveness of the proposed method.


2012 ◽  
Vol 468-471 ◽  
pp. 434-438
Author(s):  
Xue Qin Kou ◽  
Li Chen Gu

The working principle of the electrical-hydraulic servo system for steel strip deviation is introduced. The mathematical model of the system is established, and the performance indexes in time domain are analyzed with MATLAB. Aiming at the steel strip deviation, an improved PID control method based on RBF neural network is proposed. According to Jacobian information identification of RBF neural network combined with incremental PID algorithm, the self-tuning of parameters is implemented so that the performance of the system can achieve the designed requirements. Compared with traditional PID control, the simulation results show RBF- PID control has better dynamic performance and stabilization.


2013 ◽  
Vol 753-755 ◽  
pp. 2674-2678
Author(s):  
Kun Yang ◽  
Cai Jun Liu ◽  
Shu Min Liu

Based on the situation that the hydraulic position servo system is easily influenced by the external interference and the parameters of which are different with time-varying, the fuzzy control can soften the buffeting and the sliding algorithm has no the same problems as the hydraulic position servo system, a brandly-new fuzzy sliding control algorithm is designed. In the simulation process, within the parameters of simulated time-varying and outside strong interference, the results show that the hydraulic servo system based on fuzzy sliding mode control algorithm has a greater resistance to internal and external interference and time-varying parameters.


Sign in / Sign up

Export Citation Format

Share Document