Geometric and solvent effects on intramolecular phenolic hydrogen abstraction by carbonyl n,π* and π,π* triplets

2001 ◽  
Vol 79 (12) ◽  
pp. 1851-1863 ◽  
Author(s):  
Edward C Lathioor ◽  
William J Leigh

The photochemistry of a series of alkoxyacetophenone, -benzophenone, and -indanone derivatives, which contain a remote phenolic group linked to the ketone by a para,para'- or meta,meta'-oxyethyl spacer, has been studied in acetonitrile and dichloromethane solutions using laser flash photolysis techniques. The corresponding methoxy-substituted compounds and, in the case of the alkoxyindanones, derivatives bearing just a remote phenyl substituent, have also been examined. The triplet lifetimes of the phenolic compounds are determined by the rates of intramolecular abstraction of the remote phenolic hydrogen, and depend on the solvent, the geometry of attachment and the configuration of the lowest triplet state. In contrast to the large (>500-fold) difference in lifetime of the para,para'- and meta,meta'-alkoxyacetophenone derivatives, both of which have lowest π,π* triplet states, smaller differences are observed for the alkoxyindanone (lowest charge transfer triplet, ~twofold difference) and alkoxybenzophenone (lowest n,π* triplet, ~18-fold difference) derivatives in acetonitrile solution. The triplet lifetimes of the acetophenone and benzophenone are significantly shorter in dichloromethane than in acetonitrile, consistent with the intermediacy of a hydrogen-bonded triplet exciplex in the reaction. This is not the case with the para,para'-indanone derivative, sugesting that hydrogen abstraction in this compound is dominated by a mechanism involving initial charge transfer rather than hydrogen bonding. This is most likely due to orientational constraints that prevent the remote phenolic -O-H group from adopting a coplanar arrangement with the n-orbitals of the carbonyl group.Key words: photochemistry, aromatic ketone, phenol, triplet, intramolecular, quenching, hydrogen abstraction, phenoxyl radical, kinetics, kinetic isotope effect, laser flash photolysis.


1989 ◽  
Vol 67 (5) ◽  
pp. 927-932 ◽  
Author(s):  
D. R. Boate ◽  
L. J. Johnston ◽  
J. C. Scaiano

Decafluorobenzophenone triplets, which have a triplet energy very close to that of benzophenone, are much more reactive than benzophenone in quenching reactions that involve hydrogen transfer and/or charge transfer. An excellent correlation has been observed between the rate constants for charge transfer quenching and the oxidation potential of the substrate. In the case of 2-propanol, where the reactivity can be fully accounted for by hydrogen transfer, decafluorobenzophenone is 35 times more reactive than benzophenone. Pentafluorobenzophenone shows intermediate behaviour. Keywords: laser photolysis, benzophenones, triplet states, charge transfer, photoreduction.



2021 ◽  
Vol 99 (1) ◽  
pp. 43-50
Author(s):  
Yongchao Zhu ◽  
Mengyu Zhu ◽  
Jingjing Xie ◽  
Yadong Hu ◽  
Ying Liu ◽  
...  

The photochemical reaction kinetics and mechanism of bisphenol A (BPA) with potassium persulfate (K2S2O8) were investigated by using 266 nm laser flash photolysis and gas chromatography mass spectrum (GC-MS) technique. Sulfate radical (SO4•−), generated upon K2S2O8 photolysis, reacted with BPA with the overall rate constant of (1.61 ± 0.15) × 109 L mol−1 s−1, and two main reaction mechanisms were involved. One was addition channel to generate BPA–SO4•− adduct with a specific second-order rate constant of (1.09 ± 0.15) × 109 L mol−1 s−1. Molecular oxygen was involved in the decay of the BPA–SO4•− adduct with a rate constant of (1.28 ± 0.14) × 108 L mol−1 s−1. Another channel was the formation of BPA’s phenoxyl radical, likely derived from a deprotonation of the cation radical (BPA•+) generated from single electron transfer reactions. The specific rate constant of BPA’s phenoxyl radical formation was determined to be (6.16 ± 0.08) × 108 L mol−1 s−1. The overall rate constant was in line with the sum of aforementioned two specific rate constants for two main reaction channels. By comparing these rate constants, it was indicated that SO4•− addition channel accounted for ∼65% (1.09/1.61) to the overall reaction, and phenoxyl radical formation accounted for only ∼35% (0.62/1.61). The transformation products of BPA were identified by using GC-MS including 4-isopropylphenol, 4-isopropenylphenol, and 2,4-di-tert-butylphenol, and the reaction mechanism was proposed. These results may provide microscopic kinetics and mechanism information on BPA degradation using SO4•−-based advanced oxidation processes.



1992 ◽  
Vol 13 (3-4) ◽  
pp. 315-321 ◽  
Author(s):  
Francesco Ghetti ◽  
Giovanni Checcucci ◽  
Francesco Lenci ◽  
Paul F. Heelis


1973 ◽  
Vol 19 (2) ◽  
pp. 251-253 ◽  
Author(s):  
Philipe Fornier de Violet ◽  
Roland Bonneau ◽  
Jacques Joussot-Dubien


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Daniel Mártire ◽  
Walter Massad ◽  
Hernán Montejano ◽  
Mónica Gonzalez ◽  
Paula Caregnato ◽  
...  

AbstractThe fluorescence emission spectra and fluorescence quantum yields of hemicyanine dyes LDS 698, LDS 722, and LDS 730 were measured in different media. No transient species was detected in the laser flash-photolysis experiments performed with Ar-saturated solutions of the dyes in methanol. However, in the presence of 0.08 M potassium iodide, the absorption of the triplet states was clearly observed. Oxygen consumption measurements in the absence and presence of a chemical trap (furfuryl alcohol) in MeOH: H2O (φ r = 1: 1) solutions of the dyes containing KI confirmed the generation of singlet molecular oxygen.



Sign in / Sign up

Export Citation Format

Share Document