The structure, photochemical reactivity, and photophysical properties of adamantyl X-substituted aryl ethers and a comparison with the alkyl groups, methyl, tert-butyl, and allyl

2005 ◽  
Vol 83 (9) ◽  
pp. 1237-1252 ◽  
Author(s):  
A L Pincock ◽  
J A Pincock

The structure, photophysical properties, and photochemistry of the adamantyl aryl ethers 1 in both methanol and cyclohexane have been examined. UV absorption spectra, 13C NMR chemical shifts, X-ray structures, and Gaussian calculations (B3LYP/6-31G(d)) indicate that these ethers adopt a 90° conformer in the ground state. In contrast, fluorescence spectra, excited singlet state lifetimes, and calculations (TDDFT) indicated a 0° conformer is preferred in the first excited singlet state S1. Irradiation in either solvent results in the formation of adamantane and the corresponding phenol as the major products, both derived from radical intermediates generated by homolytic cleavage of the ether bond. The 4-cyano substituted ether 1j was the only one to form the ion-derived product, 1-methoxyadamantane (16% yield), on irradiation in methanol. Rate constants of bond cleavage for these ethers from S1 were estimated by two different methods by comparison with the unreactive anisoles 2, but the effect of substituents was too small to determine structure–reactivity correlations. The temperature dependence of the quantum yields of the fluorescence of the unsub stituted, 4-methoxy and 4-cyano derivatives of 1 and 2 were also determined. These results indicated that the activated process for 1 was mainly bond cleavage for the 4-cyano substrate whereas for 2, it was internal conversion and intersystem crossing. Key words: aryl ether photochemistry, fluorescence, excited-state rate constants, excited-state temperature effects.


2006 ◽  
Vol 84 (1) ◽  
pp. 10-20 ◽  
Author(s):  
C M Gonzalez ◽  
J A Pincock

The photochemistry, photophysical properties, and temperature dependence (–25 to +65 °C) of fluorescence by quantum yields and excited singlet state lifetimes in acetonitrile have been examined for three sets of dialkylbenzene derivatives: Set 1 — ortho-xylene (10), tetralin (11), and indan (12); Set 2 — 2,3-dimethylbenzonitrile (9-23), 5-cyanotetralin (T-23), and 4-cyanoindan (I-23); and Set 3 — 3,4-dimethylbenzonitrile (9-34), 6-cyanotetralin (T-34), and 5-cyanoindan (I-34). Phototransposition reactions occur for 10, 9-23, 9-34, and T-34. Fitting of the temperature-dependent fluorescence data to an Arrhenius expression gave A and Ea values for all substrates studied except I-23 and I-34. The fluorescence intensity of these two compounds was essentially independent of temperature. For the other compounds, the data revealed that the activation barrier separating the excited singlet state (S1) from the reactive intermediate, a prefulvene biradical, was the important one in determining the reaction efficiency. The dominant mode of decay of the reactive intermediate was internal return to the starting material. Moreover, the general observation was made that nitrile substitution ortho to one of the alkyl groups in these dialkylbenzene derivatives reduced the rate at which they were converted to the reactive intermediate and, therefore, also the efficiency of the phototransposition reactions.Key words: phototranspositions, substituted benzenes, temperature-dependent fluorescence, activation parameters.



1999 ◽  
Vol 77 (5-6) ◽  
pp. 1136-1147 ◽  
Author(s):  
William J Leigh ◽  
Rabah Boukherroub ◽  
Christine J Bradaric ◽  
Christine C Cserti ◽  
Jennifer M Schmeisser

Direct photolysis of 1-phenylsilacyclobutane and 1-phenyl-, 1-(2-phenylethynyl)-, and 1-(4'-biphenylyl)-1-methylsilacyclobutane in hexane solution leads to the formation of ethylene and the corresponding 1-arylsilenes, which have been trapped by photolysis in the presence of methanol. Quantum yields for photolysis of the three methyl-substituted compounds have been determined to be 0.04, 0.26, and 0.29, respectively, using the photolysis of 1,1-diphenylsilacyclobutane Φsilene = 0.21) as the actinometer. The corresponding silenes have been detected by laser flash photolysis; they have lifetimes of several microseconds, exhibit UV absorption maxima ranging from 315 to 330 nm, and react with methanol with rate constants on the order of (2-5) × 109 M-1 s-1 in hexane. Absolute rate constants for reaction of 1-phenylsilene and 1-methyl-1-phenylsilene with water, methanol, tert-butanol, and acetic acid in acetonitrile solution have been determined, and are compared to those of 1,1-diphenylsilene under the same conditions. With the phenylethynyl- and biphenyl-substituted methylsilacyclobutanes, the triplet states can also be detected by laser flash photolysis, and are shown to not be involved in silene formation on the basis of triplet sensitization and (or) quenching experiments. Fluorescence emission spectra and singlet lifetimes have been determined for the three 1-aryl-1-methylsilacyclobutanes, 1,1-diphenylsilacyclobutane, and a series of acyclic arylmethylsilane model compounds. These data, along with the reaction quantum yields, allow estimates to be made of the rate constants for the excited singlet state reaction responsible for silene formation. 1-Methyl-1-phenylsilacyclobutane undergoes reaction from its lowest excited singlet state with a rate constant 10-80 times lower than those of the other three derivatives. The results are consistent with a stepwise mechanism for silene formation, involving a 1,4-biradicaloid intermediate that partitions between product and starting material.Key words: silene, silacyclobutane, photochemistry, biradical.



1988 ◽  
Vol 43 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Dieter Oelkrug ◽  
Klaus Rempfer ◽  
Ellen Prass ◽  
Herbert Meier

Abstract The absorption and fluorescence of three isomeric distyrylbenzenes are investigated as function of temperature. From the fluorescence decay times and fluorescence quantum yields two classes of oligostyrylarenes can be distinguished. A decisive criterion for this classification is, whether the first excited singlet state S1 belongs to an allowed or forbidden transition S0→S1.





1983 ◽  
Vol 38 (9) ◽  
pp. 995-1002 ◽  
Author(s):  
Wolfram Baumann

Abstract The permanent dipole moment of a class of merocyanine dyes in their ground and first excited singlet state has been determined studying the influence of an external electric field on the absorption of the compounds in various solvents. Evaluation of the experimental results on the basis of the Onsager reaction field model also gives values for the polarizability in the ground and excited state, the latter approaches the value of a respective conducting ellipsoid with the longer chainlength molecules.



1999 ◽  
Vol 103 (41) ◽  
pp. 8751-8758 ◽  
Author(s):  
James A. Bautista ◽  
Robert E. Connors ◽  
B. Bangar Raju ◽  
Roger G. Hiller ◽  
Frank P. Sharples ◽  
...  


Author(s):  
Lamine Cisse ◽  
Abdoulaye Djande ◽  
Martine Capo-Chichi ◽  
François Delatre ◽  
Adama Saba ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document