Titanium pyridyl-phosphinimide complexes — Synthesis, structure, and ethylene polymerization catalysis

2006 ◽  
Vol 84 (5) ◽  
pp. 755-761 ◽  
Author(s):  
Chad Beddie ◽  
Pingrong Wei ◽  
Douglas W Stephan

A series of Ti–pyridyl-phosphinimide complexes of the form Cp′TiX2[NPR2(2-CH2Py)] (Cp′ = Cp, Cp*, R = i-Pr, t-Bu, X = Cl, Me) have been prepared and characterized. These complexes generate ethylene polymerization catalysts upon activation with MAO or B(C6F5)3. The resulting polymers exhibit broad molecular weight distributions. The role of the pyridyl group is discussed in light of stoichiometric reactions of CpTiCl2[NPR2(2-CH2Py)] with B(C6F5)3.Key words: phosphinimide complexes, pyridyl-phosphinimides, olefin polymerization.

2004 ◽  
Vol 82 (8) ◽  
pp. 1304-1313 ◽  
Author(s):  
Emily Hollink ◽  
Pingrong Wei ◽  
Douglas W Stephan

The phosphines and corresponding phosphinimines R2BnPNSiMe3 (R = t-Bu, Cy), p-C6H4(CH2PR2)2 (R = t-Bu (1), Cy (2)), and p-C6H4(CH2PR2NSiMe3)2 (R = t-Bu (3), Cy (4)) were prepared in high yields. Subsequent reaction with Ti precursors afforded (R2BnPN)TiCp*Cl2 (Cp* = η-C5Me5; R = t-Bu (5), Cy (6)), (R2BnPN)TiCpCl2 (Cp = η-C5H5; R = t-Bu (7), Cy (8)), p-C6H4(CH2PR2NTiCp*Cl2)2 (R = t-Bu (9), Cy (10)), and p-C6H4(CH2PR2NTiCpCl2)2 (R = t-Bu (11), Cy (12)). Methylation of the above complexes gave (R2BnPN)TiCp*Me2 (R = t-Bu (13), Cy (14)), (R2BnPN)TiCpMe2 (R = t-Bu (15), Cy (16)), p-C6H4(CH2PR2NTiCp*Me2)2 (R = t-Bu (17), Cy (18)), and p-C6H4(CH2PR2NTiCpMe2)2 (R = t-Bu (19), Cy (20)). The activity of these species as catalyst precursors in ethylene polymerization catalysis was evaluated using Schlenk line and Buchi reactor techniques using activation by methylaluminoxane (MAO) or [Ph3C][B(C6F5)4]. All these catalysts showed good activities and yield polymers with relatively broad molecular weight distributions. The bimodal polymers derived from catalysts generated using MAO are proposed to result from additional active species, possibly as a result of reaction of MAO with the benzylic fragments. X-ray data are reported for 1, 4–8, 10, 12–14, 16, and 18–20.Key words: phosphinimides, polymerization, catalysis, polyethylene, titanium, polymer molecular weight distributions.


1967 ◽  
Vol 40 (2) ◽  
pp. 484-492 ◽  
Author(s):  
Genichi Yasuda

Abstract Synthetic rubber of different species, types, and degrees of mastication were used to examine the general validity of the proposed relationship between mechanical relaxation spectra in the rubbery region and molecular weight distribution. Results show that the proposed relationship can be well used to discuss quantitatively the role of molecular weight distribution in the theoretical behavior of a raw rubber while being processed.


2007 ◽  
Vol 62 (3) ◽  
pp. 314-322 ◽  
Author(s):  
Alexandra Kestel-Jakob ◽  
Helmut G. Alt

The synthesis and characterization of 16 new boryl-substituted zirconocene dichloride complexes are reported. After activation with methyl aluminoxane (MAO) these complexes are catalysts for homogeneous ethylene polymerization. The combination of these complexes with nickel catalysts containing Lewis basic substituents produces polymers with bimodal molecular weight distributions.


Sign in / Sign up

Export Citation Format

Share Document