BASIC ESTERS OF SUBSTITUTED PYRIMIDINE-4-CARBOXYLIC ACIDS

1956 ◽  
Vol 34 (10) ◽  
pp. 1444-1446 ◽  
Author(s):  
Gordon A. Grant ◽  
Carl Von Seemann ◽  
Stanley O. Winthrop

A number of β-dialkylaminoethyl esters of 2,5-disubstituted pyrimidine-4-carboxylic acids have been synthesized and characterized as their hydrochlorides and in some cases as their methobromide and methiodide salts. Mucochloric acid has been condensed with S-methylisothiouronium sulphate to give 2-methylthio-5-chloropyrimidine-4-carboxylic acid, and the corresponding 5-bromo- acid has been converted to the 5-amino-acid.

mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Ghulam Jeelani ◽  
Dan Sato ◽  
Tomoyoshi Soga ◽  
Haruo Watanabe ◽  
Tomoyoshi Nozaki

ABSTRACTl-Cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins,l-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such asEntamoeba histolytica,l-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeledl-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism ofl-cysteine inE. histolytica. [U-13C3,15N]l-cysteine was rapidly metabolized into three unknown metabolites, besidesl-cystine andl-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products ofl-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage ofl-cysteine. Liberation ofl-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of thesel-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress.IMPORTANCEAmebiasis is a human parasitic disease caused by the protozoan parasiteEntamoeba histolytica. In this parasite,l-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly oxygenated tissues in the intestine and the liver. It is well known thatE. histolyticaneeds a comparatively high concentration ofl-cysteine for its axenic cultivation. However, the reason for and the metabolic fate ofl-cysteine in this parasite are not well understood. Here, using a metabolomic and stable-isotope-labeled approach, we investigated the metabolic fate of this amino acid in these parasites. We found thatl-cysteine inside the cell rapidly reacts with aldehydes to form 2-(R)-thiazolidine-4-carboxylic acid. We showed that these 2-(R)-thiazolidine-4-carboxylic derivatives serve as anl-cysteine source, promote growth, and protect cells against oxidative stress by scavenging aldehydes and reducing the ROS level. Our findings represent the first demonstration of 2-(R)-thiazolidine-4-carboxylic acids and their roles in protozoan parasites.


2017 ◽  
Vol 13 ◽  
pp. 1478-1485 ◽  
Author(s):  
Kohei Yamada ◽  
Naoto Kamimura ◽  
Munetaka Kunishima

A novel method for the synthesis of trisubstituted oxazoles via a one-pot oxazole synthesis/Suzuki–Miyaura coupling sequence has been developed. One-pot formation of 5-(triazinyloxy)oxazoles using carboxylic acids, amino acids and a dehydrative condensing reagent, DMT-MM, followed by Ni-catalyzed Suzuki–Miyaura coupling with boronic acids provided the corresponding 2,4,5-trisubstituted oxazoles in good yields.


2018 ◽  
Vol 21 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Ghasem Marandi

Aim and Objective: The reaction of cyclohexylisocyanide and 2-aminopyridine-3- carboxylic acid in the presence of benzaldehyde derivatives in ethanol led to 3-(cyclohexylamino)-2- arylimidazo[1,2-a]pyridine-8-carboxylic acids in high yields. In a three component condensation reaction, isocyanide reacts with 2-aminopyridine-3-carboxylic acid and aromatic aldehydes without any prior activation. Material and Methods: The synthesized products have stable structures which have been characterized by IR, 1H, 13C and Mass spectroscopy as well as CHN-O analysis. Results: In continuation of our attempts to develop simple one-pot routes for the synthesis of 3- (cyclohexylamino)-2-arylimidazo[1,2-a]pyridine-8-carboxylic acids, aromatic aldehydes with divers substituted show a high performance. Conclusion: In conclusion, this study introduces the art of combinatorial chemistry using a simple one-pot procedure for the synthesis of new materials which are interesting compounds in medicinal and biological sciences.


2021 ◽  
pp. 174751982098715
Author(s):  
Khethobole C Sekgota ◽  
Michelle Isaacs ◽  
Heinrich C Hoppe ◽  
Ronnett Seldon ◽  
Digby F Warner ◽  
...  

Propylphosphonic acid anhydride has been successfully used as a coupling agent in the synthesis of a series of indolizine-2-carboxamido derivatives from indolizine-2-carboxylic acid and its 3-acetylated analogue. The acid substrates were obtained by saponification of the corresponding methyl esters produced, in turn, selectively and efficiently, by time-controlled cyclisation of a single Morita–Baylis–Hillman adduct. Various amino and hydrazino compounds with medicinal potential have been used to prepare indolizine-2-carboxamido and hydrazido derivatives.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 123-128
Author(s):  
Anna Pachuta-Stec ◽  
Urszula Kosikowska ◽  
Anna Chodkowska ◽  
Monika Pitucha ◽  
Anna Malm ◽  
...  

N-Substituted amides of endo-3-(3-methylthio-1,2,4-triazol-5-yl)bicyclo[2.2.1]hept-5-ene- 2-carboxylic acid and 1-(5-methylthio-1,2,4-triazol-3-yl)cyclohexane-2-carboxylic acid were prepared by the condensation reaction of endo-S-methyl-N1-(bicyclo[2.2.1]hept-5-ene-2,3- dicarbonyl)isothiosemicarbazide and S-methyl-N1-(cyclohexane-2,3-dicarbonyl)isothiosemicarbazide with primary amines. The synthesized compounds were screened for their microbiological and pharmacological activities


Tetrahedron ◽  
1987 ◽  
Vol 43 (8) ◽  
pp. 1857-1861 ◽  
Author(s):  
Geoffrey N. Austin ◽  
Peter D. Baird ◽  
Hak-Fun Chow ◽  
L.E. Fellows ◽  
G.W.J. Fleet ◽  
...  

1966 ◽  
Vol 44 (13) ◽  
pp. 1493-1499 ◽  
Author(s):  
Keith Bowden ◽  
D. C. Parkin

The rate coefficients for the reaction with diazodiphenylmethane, in ethanol at 30.0°, of a number of substituted indole-2-carboxylic acids, indole-3-carboxylic acids, coumarin-3-carboxylic acids, coumarilic acids, and N-phenylglycines have been determined. The effect of substitution is assessed by use of adapted Hammett and Dewar–Grisdale relations. The relations give good correlations for oxygen-ring heterocyclic systems, and the relative ability of the systems to transmit π-electron effects has been determined. An anomalous perturbing effect appears to operate in the indole-carboxylic acid systems.


Sign in / Sign up

Export Citation Format

Share Document