4-O-METHYL-D-GLUCURONIC ACID AND 4-O-METHYL-D-GLUCOSE

1957 ◽  
Vol 35 (7) ◽  
pp. 595-598 ◽  
Author(s):  
P. A. J. Gorin

A novel method for the preparation of 4-O-methyl-D-glucuronic acid is described. This sugar and 4-O-methyl-D-glucose were obtained in good yield by two different series of reactions from 2-O-(4-O-methyl-D-glucopyranuronosido)-D-xylose, an acid hydrolysis product of the hemicellulose of Populustacamahacca Mill.

1954 ◽  
Vol 32 (11) ◽  
pp. 999-1004 ◽  
Author(s):  
C. T. Bishop ◽  
G. A. Adams ◽  
E. O. Hughes

A complex polysaccharide has been isolated from the fresh-water alga, Anabaena cylindrica, grown in a synthetic culture medium. Prolonged acid hydrolysis yielded glucose, xylose, glucuronic acid, galactose, rhamnose, and arabinose in a molar ratio of 5: 4: 4: 1: 1: 1. Chemical fractionations of the polysaccharide material from solution in cupriethylenediamine, and of its acetate from organic solvents indicated chemical homogeneity.


1962 ◽  
Vol 40 (12) ◽  
pp. 2204-2213 ◽  
Author(s):  
A. Misaki ◽  
S. Kirkwood ◽  
J. V. Scaletti ◽  
F. Smith

The extracellular polysaccharide isolated from cultures of Xanthomonas oryzae is composed of D-glucose (5 molecular proportions), D-glucuronic acid (2 molecular proportions), and D-mannose (5 molecular proportions). Acid hydrolysis of this polysaccharide, which contains 0.3% combined pyruvic acid, yields 2-O-β-D-glucopyranosyluronic acid D-mannose, which has been characterized as its crystalline fully methylated β-glycoside. Hydrolysis of the methylated polysaccharide gives 2,3,4,6-tetra-O-methyl-D-mannose (3 molecular proportions), 2,3,4-tri-O-methyl-D-glucuronic acid (1 molecular proportion), 2,3,6-tri-O-methyl-D-glucose (4 molecular proportions), 3,4,6-tri-O-methyl-D-mannose (2 molecular proportions), 2,6-di-O-methyl-D-glucose (3 molecular proportions), 2,3-di-O-methyl-D-glucose (1 molecular proportion). The polyalcohol derived from the polysaccharide by periodate oxidation followed by sodium borohydride reduction gives upon acid hydrolysis glycerol (2 molecular proportions), erythritol (1 molecular proportion), and D-glucose (1 molecular proportion). The general structural significance of these findings is discussed.


2012 ◽  
Vol 7 (11) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Zonghong Li ◽  
Dan Jiang ◽  
Hongtao Bi ◽  
Dazheng Liu ◽  
Sungju Jang ◽  
...  

A glucuronomannan (AA-4-H, Mw around 4 KDa) was prepared from the fruit bodies of Auricularia auricala by extraction with hot water, deproteination by Sevag reagent, stepwise precipitation with ethanol and partial acid hydrolysis. Monosaccharides analysis revealed that AA-4-H consisted of 91% mannose (Man) and 9% glucuronic acid (GlcA). FT-IR, NMR and methylation analyses indicated that AA-4-H is a branched glucuronomannan. Its main chains are composed of 1, 3-linked α-Man p, side chains are single α-Man p or α-GlcA residues attached to the O-2 and O-6 of Man residues of the main chains. Bioassay indicated that AA-4-H remarkably enhanced B lymphocyte proliferation and increased the production of nitric oxide of macrophages in vitro. Thus, glucuronomannan AA-4-H could be explored as a potential immunostimulation agent.


2005 ◽  
Vol 60 (8) ◽  
pp. 853-857 ◽  
Author(s):  
Piotr Kuś ◽  
Peter G. Jones ◽  
Rafał Celiński

In this study we compare spectroscopic properties of pemoline (2-amino-5-phenyl-2-oxazolin- 4-one) and its acid hydrolysis product 5-phenyl-oxazolidine-2,4-dione. Crystallization of pemoline from aqueous acetic acid gave single crystals of compound 2, the structure of which was determined by X-ray studies. All four crystallographically independent molecules form dimers linked by N-H···O = C hydrogen bonds.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sefrinus Maria Dolfi Kolo ◽  
Deana Wahyuningrum ◽  
Rukman Hertadi

The process of acid hydrolysis using conventional methods at high concentrations results in products having lower yields, and it needs a longer time of process; therefore, it becomes less effective. In this study, we analyzed the effects of microwave-assisted pretreatment and cofermentation on bioethanol production from elephant grass (Pennisetum purpureum). We used a combination of delignification techniques and acid hydrolysis by employing a microwave-assisted pretreatment method on elephant grass (Pennisetum purpureum) as a lignocellulosic material. This was followed by cofermentation with Saccharomyces cerevisiae ITB-R89 and Pichia stipitis ITB-R58 to produce bioethanol. The optimal sugar mixtures (fructose and xylose) of the hydrolysis product were subsequently converted into bioethanol by cofermentation with S. cerevisiae ITB-R89 and P. stipitis ITB-R58, carried out with varying concentrations of inoculum for 5 days (48 h) at 30°C and pH 4.5. The high-power liquid chromatographic analysis revealed that the optimal inoculum concentration capable of converting 76.15% of the sugar mixture substrate (glucose and xylose) to 10.79 g/L (34.74% yield) of bioethanol was 10% (v/v). The optimal rate of ethanol production was 0.45 g/L/d, corresponding to a fermentation efficiency of 69.48%.


1959 ◽  
Vol 37 (1) ◽  
pp. 29-34 ◽  
Author(s):  
G. A. Adams

Acid hydrolysis of extractive-free white spruce wood produced a number of neutral and acidic sugars and oligosaccharides. The acidic components were isolated and three of these were shown to be 4-O-methyl-D-glucuronic acid, 2-O-(4-O-methyl-α-D-glucopyranosyluronic acid)-D-xylose, and tentatively O-(4-O-methyl-α-D-glucopyranosyluronic acid)-(1→ 2)-O-β-D-xylopyranosyl-(1→ 4)-D-xylopyranose.


1955 ◽  
Vol 8 (4) ◽  
pp. 512 ◽  
Author(s):  
AJ Birch ◽  
J Cymerman-Craig ◽  
M Slaytor

The reduction by sodium and ethanol, with or without liquid ammonia as solvent, of various amidines followed by acid hydrolysis, leads in many cases to a good yield of the corresponding aldehyde. Further reduction in liquid ammonia of several 2-aryl-imidazolines or imidazolidines followed by acid hydrolysis leads to the 2,5-dihydro-benzaldehyde derivative. The reduction of some acid amides by sodium and proton sources in liquid ammonia has been examined. Under the right conditions this process is of preparative value for aldehydes.


1957 ◽  
Vol 35 (2) ◽  
pp. 108-114 ◽  
Author(s):  
J. Schmorak ◽  
C. T. Bishop ◽  
G. A. Adams

Graded acid hydrolysis of a soluble wheat bran hemicellulose containing L-arabinose (50%), D-xylose (38.5%), and D-glucuronic acid (9.0%) preferentially removed the L-arabinose giving an insoluble acidic polysaccharide in approximately 25% yield by weight. Methylation studies, periodate oxidation data, and hypoiodite end group estimations showed that the degraded polysaccharide was composed of repeating units of 7-8 D-xylopyranose residues joined by β,1 → 4 linkages. To this repeating unit, one D-glucuronic acid unit was attached by a 1 → 2 glycosidic bond. The cellulolytic enzyme of Myrotheciumverrucaria, which is specific for β,1 → 4 glycosidic linkages, hydrolyzed the degraded polysaccharide although it had no effect on the parent hemicellulose


Sign in / Sign up

Export Citation Format

Share Document