THE CONFORMATIONS IN SOLUTION OF trans-CYCLOHEXENE DIHALIDES AND cis- AND trans-1,2-CYCLOHEXANEDIOLS AND DERIVATIVES

1964 ◽  
Vol 42 (4) ◽  
pp. 893-910 ◽  
Author(s):  
R. U. Lemieux ◽  
J. W. Lown

trans-1,4,4-Trideuteriocyclohexene dichloride, dibromide, and diiodide and the 1,4,4-trideuterio-cis- and trans-1,2-cyclohexanediols together with their O-acetyl, O-tosyl, and O-isopropylidene derivatives were synthesized. Their nuclear magnetic resonance (NMR) spectral parameters were obtained with a spectrometer operating at 100 Mc.p.s. and employing double irradiation to establish the chemical shifts and the signs of the coupling constants. The interpretation of the data according to expectations based on the Karplus relationship, for dihedral angles and coupling constants, support the conformational equilibria assigned to the trans-dichloride and trans-dibromide of cyclohexene on the basis of dipole moment measurements (previously published results). The results indicate that trans-cyclohexene diiodide exists to about 84% in the diaxial conformation. In the case of the 1,2-cis-disubstituted cyclohexanes, the occurrence of the signal for the 3-hydrogen in trans relation to the 2-hydrogen at lower field than its geminal 3-hydrogen is assigned to the deshielding influence on the 3-hydrogen when in axial orientation by an opposing axial oxygen at the 1-position. Support for this contention was obtained by determination of the chemical shifts of the geminal hydrogens at the 3- and 5-positions of the cis- and trans-4-t-butyl-2,2,6,6-tetradeuterio-1-methylcyclohexanols. The conformational equilibria indicated for the 1,2-diol, 1,2-diacetoxy, and 1,2-ditosyloxy trans derivatives of 1,4,4-trideuteriocyclohexane by NMR parameters obtained from the spectrum of the O-isopropylidene derivatives of the trans-diol allowed conclusions regarding the non-bonded interaction energies involved. The Karplus relation had to be adjusted to the form, [Formula: see text] and [Formula: see text] to accommodate the results. Solvent effects on conformation are noted. Also, the investigation provided further evidence for the opposite signs of the coupling constants for geminal and vicinal hydrogens. A consideration of the chemical shifts observed for a variety of derivatives of cyclohexanol appears to indicate that intramolecular shielding effects are better accounted for on the basis of neighboring atomic groupings than on the basis of individual chemical bonds.


1983 ◽  
Vol 38 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Angelika Sebald ◽  
Bernd Wrackmeyer ◽  
Wolfgang Beck

The NMR parameters (1H, 13C, 31P, 195Pt) of compounds of the type cis- and trans- [M(C≡C-R)2(PR′3)2] (M = Ni, Pd, Pt) are reported. The chemical shifts δ13C (M-C≡C; R) and δ195Pt (together with UV data) indicate the presence of π-backbonding from the metal into π*C≡C the orbitals. This also explains some unusual features of the coupling constants J(≡13C1H), J(13C≡13C) and J(195Pt13C≡). The NMR parameters reflect an increase in the amount of π-backbonding for Pt < Pd < Ni.



1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.



1969 ◽  
Vol 47 (1) ◽  
pp. 1-17 ◽  
Author(s):  
L. D. Hall ◽  
J. F. Manville ◽  
N. S. Bhacca

A detailed study has been made of both the 1H and 19F nuclear magnetic resonance (n.m.r.) spectra of a series of hexopyranosyl fluoride derivatives. Some of the 1H spectra were measured at 220 MHz. The 1H spectral parameters define both the configuration and the conformation of each of these derivatives. Study of the 19F n.m.r. parameters revealed several stereospecific dependencies. The 19F chemical shifts depend upon, (a) the orientation of the fluorine substituent with respect to the pyranose ring and, (b) the relative orientation of other substituents attached to the ring; for acetoxy substituents, these configurational dependencies appear to be additive. The vicinal19F–1H coupling constants exhibit a marked angular dependence for which Jtrans = ca. 24 Hz whilst Jgauche = 1.0 to 1.5 Hz for [Formula: see text] and 7.5 to 12.6 Hz for [Formula: see text] The geminal19F–1H couplings depend on the orientation of the substituent at C-2; when this substituent is equatorial JF,H is ca. 53.5 Hz and when it is axial the value is ca. 49 Hz.



1983 ◽  
Vol 61 (1) ◽  
pp. 26-28
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian

The 1H nmr spectral parameters are extracted for a 4 mol% solution of 2-methylthiobenzaldehyde in CCl4 at 305 K. The long-range spin–spin coupling constants involving the aldehydic and methyl protons are consistent only with a preferred conformation in which all heavy atoms are coplanar, as are the chemical shifts of the ring and methyl protons. This conclusion contradicts previous interpretations of the dipole moment, the nmr parameters, and of the infrared data for CCl4 solutions. The present data show that the O-syn and O-anti forms of the compound are present in roughly equal proportions.



1987 ◽  
Vol 52 (3) ◽  
pp. 736-741 ◽  
Author(s):  
Antonín Lyčka ◽  
Libuše Havlíčková ◽  
Alois Koloničný ◽  
Josef Jirman

The 15N chemical shifts and 1J(15N, H) coupling constants of 1,4-bis(substituted amino)-9,10-anthraquinones and 1,4-bis(substituted amino)-2,3-dihydro-9,10-anthraquinones indicate that these derivatives exist as true aminoderivatives except for 1,4-bis(phenylamino)-2,3-dihydro-9,10-anthraquinone which forms a tautomeric mixture of the amino and imino forms in deuteriochloroform and hexadeuteriodimethyl sulphoxide.



1977 ◽  
Vol 55 (3) ◽  
pp. 557-561 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The long-range spin–spin coupling constants between protons bonded to silicon and ring protons in C6H5SiH3, C6H5SiH2Cl, C6H5SiH2CH3, C6H5SiHCl2, and C6H5SiH(CH3)2 are determined from the proton magnetic resonance spectra of benzene solutions. A hindered rotor treatment of the barrier to internal rotation about the C—Si bond, in conjunction with the coupling constants over six bonds, allows the deduction of the low-energy conformations for C6H5SiH(CH3)2 and for C6H5SiHCl2, as well as of barriers of 1.0 ± 0.2 kcal/mol. The approach becomes less reliable for C6H5SiH2CH3 and for C6H5SiH2Cl and, particularly for the latter compound, the derived barrier is very likely an upper limit only. Ab initio molecular orbital calculations of the conformational energies are reported for C6H5SiH3, C6H5SiH2Cl, and for C6H5SiHCl2.



1990 ◽  
Vol 55 (5) ◽  
pp. 1193-1207 ◽  
Author(s):  
Jaroslav Holeček ◽  
Antonín Lyčka ◽  
Karel Handlíř ◽  
Milan Nádvorník

13C and 119Sn NMR spectra of diphenyl- and dibenzyltin(IV) compounds have been studied in solutions of coordinating and non-coordinating solvents. Regions of values of the δ(119Sn) chemical shifts have been determined which characterize individual types of coordination of the central tin atom. The values of 13C NMR spectral parameters, the δ(13C) chemical shifts and nJ(119Sn, 13C) coupling constants, have been used to describe the real shapes of coordination sphere of the central tin atom and to discuss the internal structure of the organic substituents and of the nature of their bonding linkage to the tin atom.



Sign in / Sign up

Export Citation Format

Share Document