Kinetics and Rate Constants of Reactions Leading to Hydration of and in Gaseous Oxygen, Argon, and Helium Containing Traces of Water

1972 ◽  
Vol 50 (14) ◽  
pp. 2230-2235 ◽  
Author(s):  
J. D. Payzant ◽  
A. J. Cunningham ◽  
P. Kebarle

The rate constants for the forward and reverse components of gas phase reactions:[Formula: see text]were measured with a pulsed electron beam, time resolved detection high pressure mass spectrometer at 300 °K. O2, Ar, and He at pressures from 1–7 Torr were used as third gas M. The forward reactions were found to be third order and the reverse reactions second order. Establishment of the equilibria could also be observed.

2007 ◽  
Vol 111 (8) ◽  
pp. 1434-1440 ◽  
Author(s):  
Rosa Becerra ◽  
Sergey E. Boganov ◽  
Mikhail P. Egorov ◽  
Irina V. Krylova ◽  
Oleg M. Nefedov ◽  
...  

1985 ◽  
Vol 63 (10) ◽  
pp. 2608-2613 ◽  
Author(s):  
John Alfred Stone ◽  
Nancy Joan Moote ◽  
Anastasia C. M. Wojtyniak

The reactions of trichloromethylium (CCl3+) with benzene and the lower alkyl aromatics (ArH) have been studied by high pressure mass spectrometry at pressures in the range 2–4 Torr and temperatures from 300 to 560 K. The only two primary products are the adduct ArHCCl3+ and ArCCl2+, which is formed by loss of HCl from the adduct. The relative yields of adduct increase with increasing number of methyl substituents on the aromatic ring (benzene → mesitylene). The disappearance of CCl3+ is kinetically second order with specific rate constants increasing from benzene to mesitylene, the latter reacting essentially at every ion–molecule collision. All rate constants are fairly large (>1010 cc molecule−1 s−1) and show negative temperature coefficients. ArCCl2+ is unreactive but ArHCCl3+ reacts further by proton transfer to ArH.


The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


1981 ◽  
Vol 59 (11) ◽  
pp. 1615-1621 ◽  
Author(s):  
Scott D. Tanner ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

Flowing afterglow measurements are reported which provide rate constants and product identifications at 298 ± 2 K for the gas-phase reactions of OH− with CH3OH, C2H5OH, CH3OCH3, CH2O, CH3CHO, CH3COCH3, CH2CO, HCOOH, HCOOCH3, CH2=C=CH2, CH3—C≡CH, and C6H5CH3. The main channels observed were proton transfer and solvation of the OH−. Hydration with one molecule of H2O was observed either to reduce the rate slightly and lead to products which are the hydrated analogues of the "nude" reaction, or to stop the reaction completely, k ≤ 10−12 cm3 molecule−1 s−1. The reaction of OH−•H2O with CH3—C≡CH showed an uncertain intermediate behaviour.


1981 ◽  
Vol 59 (15) ◽  
pp. 2412-2416 ◽  
Author(s):  
John A. Stone ◽  
Margaret S. Lin ◽  
Jeffrey Varah

The reactivity of the dimethylchloronium ion with a series of aromatic hydrocarbons has been studied in a high pressure mass spectrometer ion source using the technique of reactant ion monitoring. Benzene is unreactive but all others, from toluene to mesitylene, react by CH3+ transfer to yield σ-bonded complexes. The relative rate of reaction increases with increasing exothermicity in line with current theories of nucleophilic displacement reactions.


2003 ◽  
Vol 107 (34) ◽  
pp. 6603-6608 ◽  
Author(s):  
Woojin Lee ◽  
Philip S. Stevens ◽  
Ronald A. Hites

Sign in / Sign up

Export Citation Format

Share Document